M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion

Cadherins are transmembrane glycoproteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion and play crucial role during skeletal myogenesis. M-cadherin is required for myoblast fusion into myotubes, but its mechanisms of action remain unknown. The goal of this study was to cast some light...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell 2007-05, Vol.18 (5), p.1734-1743
Hauptverfasser: Charrasse, Sophie, Comunale, Franck, Fortier, Mathieu, Portales-Casamar, Elodie, Debant, Anne, Gauthier-Rouvière, Cécile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1743
container_issue 5
container_start_page 1734
container_title Molecular biology of the cell
container_volume 18
creator Charrasse, Sophie
Comunale, Franck
Fortier, Mathieu
Portales-Casamar, Elodie
Debant, Anne
Gauthier-Rouvière, Cécile
description Cadherins are transmembrane glycoproteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion and play crucial role during skeletal myogenesis. M-cadherin is required for myoblast fusion into myotubes, but its mechanisms of action remain unknown. The goal of this study was to cast some light on the nature of the M-cadherin-mediated signals involved in myoblast fusion into myotubes. We found that the Rac1 GTPase activity is increased at the time of myoblast fusion and it is required for this process. Moreover, we showed that M-cadherin-dependent adhesion activates Rac1 and demonstrated the formation of a multiproteic complex containing M-cadherin, the Rho-GEF Trio, and Rac1 at the onset of myoblast fusion. Interestingly, Trio knockdown efficiently blocked both the increase in Rac1-GTP levels, observed after M-cadherin-dependent contact formation, and myoblast fusion. We conclude that M-cadherin-dependent adhesion can activate Rac1 via the Rho-GEF Trio at the time of myoblast fusion.
doi_str_mv 10.1091/mbc.E06-08-0766
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1855016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70415153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-b324676a5e6c4bf641f11ae4d094f2890771b3534a0edaca367c0a1c089624e63</originalsourceid><addsrcrecordid>eNpdUU1r3DAQFaWlSZOeeys6FXpQMmN92L4UQthsClsSQnoWY1leu9hWKtkL-ff1skvb5PSGmffezPAY-4RwgVDi5VC5ixUYAYWA3Jg37BRLWQqlC_N2qUGXAnWmTtiHlH4BoFImf89OMJcy0yBP2f0P4ahufexGTm7qdjT5xB_IIV8_3lPyfGpjmLftgp4_tEGsVzd8il3g9byItnx4DlVPaeLNnLownrN3DfXJfzziGft5s3q8vhWbu_X366uNcNoUk6hktpxiSHvjVNUYhQ0ieVVDqZqsKCHPsZJaKgJfkyNpcgeEDorSZMobeca-HXyf5mrwtfPjFKm3T7EbKD7bQJ19ORm71m7DzmKhNeDe4OvBoH0lu73a2H0PIMNMAuxw4X45Lovh9-zTZIcuOd_3NPowJ5uDQo1aLsTLA9HFkFL0zV9nBLtPzC6JWQ_GQmH3iS2Kz___8Y9_jEj-AfunkS8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70415153</pqid></control><display><type>article</type><title>M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Charrasse, Sophie ; Comunale, Franck ; Fortier, Mathieu ; Portales-Casamar, Elodie ; Debant, Anne ; Gauthier-Rouvière, Cécile</creator><creatorcontrib>Charrasse, Sophie ; Comunale, Franck ; Fortier, Mathieu ; Portales-Casamar, Elodie ; Debant, Anne ; Gauthier-Rouvière, Cécile</creatorcontrib><description>Cadherins are transmembrane glycoproteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion and play crucial role during skeletal myogenesis. M-cadherin is required for myoblast fusion into myotubes, but its mechanisms of action remain unknown. The goal of this study was to cast some light on the nature of the M-cadherin-mediated signals involved in myoblast fusion into myotubes. We found that the Rac1 GTPase activity is increased at the time of myoblast fusion and it is required for this process. Moreover, we showed that M-cadherin-dependent adhesion activates Rac1 and demonstrated the formation of a multiproteic complex containing M-cadherin, the Rho-GEF Trio, and Rac1 at the onset of myoblast fusion. Interestingly, Trio knockdown efficiently blocked both the increase in Rac1-GTP levels, observed after M-cadherin-dependent contact formation, and myoblast fusion. We conclude that M-cadherin-dependent adhesion can activate Rac1 via the Rho-GEF Trio at the time of myoblast fusion.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E06-08-0766</identifier><identifier>PMID: 17332503</identifier><language>eng</language><publisher>United States: American Society for Cell Biology</publisher><subject>Animals ; Base Sequence ; Biochemistry, Molecular Biology ; Cadherins ; Cadherins - antagonists &amp; inhibitors ; Cadherins - metabolism ; Cell Adhesion ; Cell Fusion ; Cell Line ; Enzyme Activation ; Guanine Nucleotide Exchange Factors ; Guanine Nucleotide Exchange Factors - antagonists &amp; inhibitors ; Guanine Nucleotide Exchange Factors - genetics ; Guanine Nucleotide Exchange Factors - metabolism ; Life Sciences ; Mice ; Multiprotein Complexes ; Muscle Fibers ; Muscle Fibers, Skeletal - cytology ; Muscle Fibers, Skeletal - metabolism ; Myoblasts, Skeletal ; Myoblasts, Skeletal - cytology ; Myoblasts, Skeletal - metabolism ; Neuropeptides ; Neuropeptides - metabolism ; Phosphoproteins ; Phosphoproteins - antagonists &amp; inhibitors ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; Protein-Serine-Threonine Kinases ; Protein-Serine-Threonine Kinases - antagonists &amp; inhibitors ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; rac GTP-Binding Proteins ; rac GTP-Binding Proteins - metabolism ; rac1 GTP-Binding Protein ; RNA, Small Interfering ; RNA, Small Interfering - genetics</subject><ispartof>Molecular biology of the cell, 2007-05, Vol.18 (5), p.1734-1743</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2007 by The American Society for Cell Biology 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-b324676a5e6c4bf641f11ae4d094f2890771b3534a0edaca367c0a1c089624e63</citedby><cites>FETCH-LOGICAL-c568t-b324676a5e6c4bf641f11ae4d094f2890771b3534a0edaca367c0a1c089624e63</cites><orcidid>0000-0002-6620-1492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855016/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855016/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17332503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00212300$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Charrasse, Sophie</creatorcontrib><creatorcontrib>Comunale, Franck</creatorcontrib><creatorcontrib>Fortier, Mathieu</creatorcontrib><creatorcontrib>Portales-Casamar, Elodie</creatorcontrib><creatorcontrib>Debant, Anne</creatorcontrib><creatorcontrib>Gauthier-Rouvière, Cécile</creatorcontrib><title>M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Cadherins are transmembrane glycoproteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion and play crucial role during skeletal myogenesis. M-cadherin is required for myoblast fusion into myotubes, but its mechanisms of action remain unknown. The goal of this study was to cast some light on the nature of the M-cadherin-mediated signals involved in myoblast fusion into myotubes. We found that the Rac1 GTPase activity is increased at the time of myoblast fusion and it is required for this process. Moreover, we showed that M-cadherin-dependent adhesion activates Rac1 and demonstrated the formation of a multiproteic complex containing M-cadherin, the Rho-GEF Trio, and Rac1 at the onset of myoblast fusion. Interestingly, Trio knockdown efficiently blocked both the increase in Rac1-GTP levels, observed after M-cadherin-dependent contact formation, and myoblast fusion. We conclude that M-cadherin-dependent adhesion can activate Rac1 via the Rho-GEF Trio at the time of myoblast fusion.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cadherins</subject><subject>Cadherins - antagonists &amp; inhibitors</subject><subject>Cadherins - metabolism</subject><subject>Cell Adhesion</subject><subject>Cell Fusion</subject><subject>Cell Line</subject><subject>Enzyme Activation</subject><subject>Guanine Nucleotide Exchange Factors</subject><subject>Guanine Nucleotide Exchange Factors - antagonists &amp; inhibitors</subject><subject>Guanine Nucleotide Exchange Factors - genetics</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Multiprotein Complexes</subject><subject>Muscle Fibers</subject><subject>Muscle Fibers, Skeletal - cytology</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Myoblasts, Skeletal</subject><subject>Myoblasts, Skeletal - cytology</subject><subject>Myoblasts, Skeletal - metabolism</subject><subject>Neuropeptides</subject><subject>Neuropeptides - metabolism</subject><subject>Phosphoproteins</subject><subject>Phosphoproteins - antagonists &amp; inhibitors</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>Protein-Serine-Threonine Kinases</subject><subject>Protein-Serine-Threonine Kinases - antagonists &amp; inhibitors</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>rac GTP-Binding Proteins</subject><subject>rac GTP-Binding Proteins - metabolism</subject><subject>rac1 GTP-Binding Protein</subject><subject>RNA, Small Interfering</subject><subject>RNA, Small Interfering - genetics</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUU1r3DAQFaWlSZOeeys6FXpQMmN92L4UQthsClsSQnoWY1leu9hWKtkL-ff1skvb5PSGmffezPAY-4RwgVDi5VC5ixUYAYWA3Jg37BRLWQqlC_N2qUGXAnWmTtiHlH4BoFImf89OMJcy0yBP2f0P4ahufexGTm7qdjT5xB_IIV8_3lPyfGpjmLftgp4_tEGsVzd8il3g9byItnx4DlVPaeLNnLownrN3DfXJfzziGft5s3q8vhWbu_X366uNcNoUk6hktpxiSHvjVNUYhQ0ieVVDqZqsKCHPsZJaKgJfkyNpcgeEDorSZMobeca-HXyf5mrwtfPjFKm3T7EbKD7bQJ19ORm71m7DzmKhNeDe4OvBoH0lu73a2H0PIMNMAuxw4X45Lovh9-zTZIcuOd_3NPowJ5uDQo1aLsTLA9HFkFL0zV9nBLtPzC6JWQ_GQmH3iS2Kz___8Y9_jEj-AfunkS8</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Charrasse, Sophie</creator><creator>Comunale, Franck</creator><creator>Fortier, Mathieu</creator><creator>Portales-Casamar, Elodie</creator><creator>Debant, Anne</creator><creator>Gauthier-Rouvière, Cécile</creator><general>American Society for Cell Biology</general><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6620-1492</orcidid></search><sort><creationdate>200705</creationdate><title>M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion</title><author>Charrasse, Sophie ; Comunale, Franck ; Fortier, Mathieu ; Portales-Casamar, Elodie ; Debant, Anne ; Gauthier-Rouvière, Cécile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-b324676a5e6c4bf641f11ae4d094f2890771b3534a0edaca367c0a1c089624e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cadherins</topic><topic>Cadherins - antagonists &amp; inhibitors</topic><topic>Cadherins - metabolism</topic><topic>Cell Adhesion</topic><topic>Cell Fusion</topic><topic>Cell Line</topic><topic>Enzyme Activation</topic><topic>Guanine Nucleotide Exchange Factors</topic><topic>Guanine Nucleotide Exchange Factors - antagonists &amp; inhibitors</topic><topic>Guanine Nucleotide Exchange Factors - genetics</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Multiprotein Complexes</topic><topic>Muscle Fibers</topic><topic>Muscle Fibers, Skeletal - cytology</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Myoblasts, Skeletal</topic><topic>Myoblasts, Skeletal - cytology</topic><topic>Myoblasts, Skeletal - metabolism</topic><topic>Neuropeptides</topic><topic>Neuropeptides - metabolism</topic><topic>Phosphoproteins</topic><topic>Phosphoproteins - antagonists &amp; inhibitors</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>Protein-Serine-Threonine Kinases</topic><topic>Protein-Serine-Threonine Kinases - antagonists &amp; inhibitors</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>rac GTP-Binding Proteins</topic><topic>rac GTP-Binding Proteins - metabolism</topic><topic>rac1 GTP-Binding Protein</topic><topic>RNA, Small Interfering</topic><topic>RNA, Small Interfering - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charrasse, Sophie</creatorcontrib><creatorcontrib>Comunale, Franck</creatorcontrib><creatorcontrib>Fortier, Mathieu</creatorcontrib><creatorcontrib>Portales-Casamar, Elodie</creatorcontrib><creatorcontrib>Debant, Anne</creatorcontrib><creatorcontrib>Gauthier-Rouvière, Cécile</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charrasse, Sophie</au><au>Comunale, Franck</au><au>Fortier, Mathieu</au><au>Portales-Casamar, Elodie</au><au>Debant, Anne</au><au>Gauthier-Rouvière, Cécile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2007-05</date><risdate>2007</risdate><volume>18</volume><issue>5</issue><spage>1734</spage><epage>1743</epage><pages>1734-1743</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Cadherins are transmembrane glycoproteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion and play crucial role during skeletal myogenesis. M-cadherin is required for myoblast fusion into myotubes, but its mechanisms of action remain unknown. The goal of this study was to cast some light on the nature of the M-cadherin-mediated signals involved in myoblast fusion into myotubes. We found that the Rac1 GTPase activity is increased at the time of myoblast fusion and it is required for this process. Moreover, we showed that M-cadherin-dependent adhesion activates Rac1 and demonstrated the formation of a multiproteic complex containing M-cadherin, the Rho-GEF Trio, and Rac1 at the onset of myoblast fusion. Interestingly, Trio knockdown efficiently blocked both the increase in Rac1-GTP levels, observed after M-cadherin-dependent contact formation, and myoblast fusion. We conclude that M-cadherin-dependent adhesion can activate Rac1 via the Rho-GEF Trio at the time of myoblast fusion.</abstract><cop>United States</cop><pub>American Society for Cell Biology</pub><pmid>17332503</pmid><doi>10.1091/mbc.E06-08-0766</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6620-1492</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2007-05, Vol.18 (5), p.1734-1743
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1855016
source MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Base Sequence
Biochemistry, Molecular Biology
Cadherins
Cadherins - antagonists & inhibitors
Cadherins - metabolism
Cell Adhesion
Cell Fusion
Cell Line
Enzyme Activation
Guanine Nucleotide Exchange Factors
Guanine Nucleotide Exchange Factors - antagonists & inhibitors
Guanine Nucleotide Exchange Factors - genetics
Guanine Nucleotide Exchange Factors - metabolism
Life Sciences
Mice
Multiprotein Complexes
Muscle Fibers
Muscle Fibers, Skeletal - cytology
Muscle Fibers, Skeletal - metabolism
Myoblasts, Skeletal
Myoblasts, Skeletal - cytology
Myoblasts, Skeletal - metabolism
Neuropeptides
Neuropeptides - metabolism
Phosphoproteins
Phosphoproteins - antagonists & inhibitors
Phosphoproteins - genetics
Phosphoproteins - metabolism
Protein-Serine-Threonine Kinases
Protein-Serine-Threonine Kinases - antagonists & inhibitors
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
rac GTP-Binding Proteins
rac GTP-Binding Proteins - metabolism
rac1 GTP-Binding Protein
RNA, Small Interfering
RNA, Small Interfering - genetics
title M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M-cadherin%20activates%20Rac1%20GTPase%20through%20the%20Rho-GEF%20trio%20during%20myoblast%20fusion&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Charrasse,%20Sophie&rft.date=2007-05&rft.volume=18&rft.issue=5&rft.spage=1734&rft.epage=1743&rft.pages=1734-1743&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E06-08-0766&rft_dat=%3Cproquest_pubme%3E70415153%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70415153&rft_id=info:pmid/17332503&rfr_iscdi=true