M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion
Cadherins are transmembrane glycoproteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion and play crucial role during skeletal myogenesis. M-cadherin is required for myoblast fusion into myotubes, but its mechanisms of action remain unknown. The goal of this study was to cast some light...
Gespeichert in:
Veröffentlicht in: | Molecular biology of the cell 2007-05, Vol.18 (5), p.1734-1743 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1743 |
---|---|
container_issue | 5 |
container_start_page | 1734 |
container_title | Molecular biology of the cell |
container_volume | 18 |
creator | Charrasse, Sophie Comunale, Franck Fortier, Mathieu Portales-Casamar, Elodie Debant, Anne Gauthier-Rouvière, Cécile |
description | Cadherins are transmembrane glycoproteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion and play crucial role during skeletal myogenesis. M-cadherin is required for myoblast fusion into myotubes, but its mechanisms of action remain unknown. The goal of this study was to cast some light on the nature of the M-cadherin-mediated signals involved in myoblast fusion into myotubes. We found that the Rac1 GTPase activity is increased at the time of myoblast fusion and it is required for this process. Moreover, we showed that M-cadherin-dependent adhesion activates Rac1 and demonstrated the formation of a multiproteic complex containing M-cadherin, the Rho-GEF Trio, and Rac1 at the onset of myoblast fusion. Interestingly, Trio knockdown efficiently blocked both the increase in Rac1-GTP levels, observed after M-cadherin-dependent contact formation, and myoblast fusion. We conclude that M-cadherin-dependent adhesion can activate Rac1 via the Rho-GEF Trio at the time of myoblast fusion. |
doi_str_mv | 10.1091/mbc.E06-08-0766 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1855016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70415153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-b324676a5e6c4bf641f11ae4d094f2890771b3534a0edaca367c0a1c089624e63</originalsourceid><addsrcrecordid>eNpdUU1r3DAQFaWlSZOeeys6FXpQMmN92L4UQthsClsSQnoWY1leu9hWKtkL-ff1skvb5PSGmffezPAY-4RwgVDi5VC5ixUYAYWA3Jg37BRLWQqlC_N2qUGXAnWmTtiHlH4BoFImf89OMJcy0yBP2f0P4ahufexGTm7qdjT5xB_IIV8_3lPyfGpjmLftgp4_tEGsVzd8il3g9byItnx4DlVPaeLNnLownrN3DfXJfzziGft5s3q8vhWbu_X366uNcNoUk6hktpxiSHvjVNUYhQ0ieVVDqZqsKCHPsZJaKgJfkyNpcgeEDorSZMobeca-HXyf5mrwtfPjFKm3T7EbKD7bQJ19ORm71m7DzmKhNeDe4OvBoH0lu73a2H0PIMNMAuxw4X45Lovh9-zTZIcuOd_3NPowJ5uDQo1aLsTLA9HFkFL0zV9nBLtPzC6JWQ_GQmH3iS2Kz___8Y9_jEj-AfunkS8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70415153</pqid></control><display><type>article</type><title>M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Charrasse, Sophie ; Comunale, Franck ; Fortier, Mathieu ; Portales-Casamar, Elodie ; Debant, Anne ; Gauthier-Rouvière, Cécile</creator><creatorcontrib>Charrasse, Sophie ; Comunale, Franck ; Fortier, Mathieu ; Portales-Casamar, Elodie ; Debant, Anne ; Gauthier-Rouvière, Cécile</creatorcontrib><description>Cadherins are transmembrane glycoproteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion and play crucial role during skeletal myogenesis. M-cadherin is required for myoblast fusion into myotubes, but its mechanisms of action remain unknown. The goal of this study was to cast some light on the nature of the M-cadherin-mediated signals involved in myoblast fusion into myotubes. We found that the Rac1 GTPase activity is increased at the time of myoblast fusion and it is required for this process. Moreover, we showed that M-cadherin-dependent adhesion activates Rac1 and demonstrated the formation of a multiproteic complex containing M-cadherin, the Rho-GEF Trio, and Rac1 at the onset of myoblast fusion. Interestingly, Trio knockdown efficiently blocked both the increase in Rac1-GTP levels, observed after M-cadherin-dependent contact formation, and myoblast fusion. We conclude that M-cadherin-dependent adhesion can activate Rac1 via the Rho-GEF Trio at the time of myoblast fusion.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E06-08-0766</identifier><identifier>PMID: 17332503</identifier><language>eng</language><publisher>United States: American Society for Cell Biology</publisher><subject>Animals ; Base Sequence ; Biochemistry, Molecular Biology ; Cadherins ; Cadherins - antagonists & inhibitors ; Cadherins - metabolism ; Cell Adhesion ; Cell Fusion ; Cell Line ; Enzyme Activation ; Guanine Nucleotide Exchange Factors ; Guanine Nucleotide Exchange Factors - antagonists & inhibitors ; Guanine Nucleotide Exchange Factors - genetics ; Guanine Nucleotide Exchange Factors - metabolism ; Life Sciences ; Mice ; Multiprotein Complexes ; Muscle Fibers ; Muscle Fibers, Skeletal - cytology ; Muscle Fibers, Skeletal - metabolism ; Myoblasts, Skeletal ; Myoblasts, Skeletal - cytology ; Myoblasts, Skeletal - metabolism ; Neuropeptides ; Neuropeptides - metabolism ; Phosphoproteins ; Phosphoproteins - antagonists & inhibitors ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; Protein-Serine-Threonine Kinases ; Protein-Serine-Threonine Kinases - antagonists & inhibitors ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; rac GTP-Binding Proteins ; rac GTP-Binding Proteins - metabolism ; rac1 GTP-Binding Protein ; RNA, Small Interfering ; RNA, Small Interfering - genetics</subject><ispartof>Molecular biology of the cell, 2007-05, Vol.18 (5), p.1734-1743</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2007 by The American Society for Cell Biology 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-b324676a5e6c4bf641f11ae4d094f2890771b3534a0edaca367c0a1c089624e63</citedby><cites>FETCH-LOGICAL-c568t-b324676a5e6c4bf641f11ae4d094f2890771b3534a0edaca367c0a1c089624e63</cites><orcidid>0000-0002-6620-1492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855016/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855016/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17332503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00212300$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Charrasse, Sophie</creatorcontrib><creatorcontrib>Comunale, Franck</creatorcontrib><creatorcontrib>Fortier, Mathieu</creatorcontrib><creatorcontrib>Portales-Casamar, Elodie</creatorcontrib><creatorcontrib>Debant, Anne</creatorcontrib><creatorcontrib>Gauthier-Rouvière, Cécile</creatorcontrib><title>M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Cadherins are transmembrane glycoproteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion and play crucial role during skeletal myogenesis. M-cadherin is required for myoblast fusion into myotubes, but its mechanisms of action remain unknown. The goal of this study was to cast some light on the nature of the M-cadherin-mediated signals involved in myoblast fusion into myotubes. We found that the Rac1 GTPase activity is increased at the time of myoblast fusion and it is required for this process. Moreover, we showed that M-cadherin-dependent adhesion activates Rac1 and demonstrated the formation of a multiproteic complex containing M-cadherin, the Rho-GEF Trio, and Rac1 at the onset of myoblast fusion. Interestingly, Trio knockdown efficiently blocked both the increase in Rac1-GTP levels, observed after M-cadherin-dependent contact formation, and myoblast fusion. We conclude that M-cadherin-dependent adhesion can activate Rac1 via the Rho-GEF Trio at the time of myoblast fusion.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cadherins</subject><subject>Cadherins - antagonists & inhibitors</subject><subject>Cadherins - metabolism</subject><subject>Cell Adhesion</subject><subject>Cell Fusion</subject><subject>Cell Line</subject><subject>Enzyme Activation</subject><subject>Guanine Nucleotide Exchange Factors</subject><subject>Guanine Nucleotide Exchange Factors - antagonists & inhibitors</subject><subject>Guanine Nucleotide Exchange Factors - genetics</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Multiprotein Complexes</subject><subject>Muscle Fibers</subject><subject>Muscle Fibers, Skeletal - cytology</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Myoblasts, Skeletal</subject><subject>Myoblasts, Skeletal - cytology</subject><subject>Myoblasts, Skeletal - metabolism</subject><subject>Neuropeptides</subject><subject>Neuropeptides - metabolism</subject><subject>Phosphoproteins</subject><subject>Phosphoproteins - antagonists & inhibitors</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>Protein-Serine-Threonine Kinases</subject><subject>Protein-Serine-Threonine Kinases - antagonists & inhibitors</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>rac GTP-Binding Proteins</subject><subject>rac GTP-Binding Proteins - metabolism</subject><subject>rac1 GTP-Binding Protein</subject><subject>RNA, Small Interfering</subject><subject>RNA, Small Interfering - genetics</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUU1r3DAQFaWlSZOeeys6FXpQMmN92L4UQthsClsSQnoWY1leu9hWKtkL-ff1skvb5PSGmffezPAY-4RwgVDi5VC5ixUYAYWA3Jg37BRLWQqlC_N2qUGXAnWmTtiHlH4BoFImf89OMJcy0yBP2f0P4ahufexGTm7qdjT5xB_IIV8_3lPyfGpjmLftgp4_tEGsVzd8il3g9byItnx4DlVPaeLNnLownrN3DfXJfzziGft5s3q8vhWbu_X366uNcNoUk6hktpxiSHvjVNUYhQ0ieVVDqZqsKCHPsZJaKgJfkyNpcgeEDorSZMobeca-HXyf5mrwtfPjFKm3T7EbKD7bQJ19ORm71m7DzmKhNeDe4OvBoH0lu73a2H0PIMNMAuxw4X45Lovh9-zTZIcuOd_3NPowJ5uDQo1aLsTLA9HFkFL0zV9nBLtPzC6JWQ_GQmH3iS2Kz___8Y9_jEj-AfunkS8</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Charrasse, Sophie</creator><creator>Comunale, Franck</creator><creator>Fortier, Mathieu</creator><creator>Portales-Casamar, Elodie</creator><creator>Debant, Anne</creator><creator>Gauthier-Rouvière, Cécile</creator><general>American Society for Cell Biology</general><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6620-1492</orcidid></search><sort><creationdate>200705</creationdate><title>M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion</title><author>Charrasse, Sophie ; Comunale, Franck ; Fortier, Mathieu ; Portales-Casamar, Elodie ; Debant, Anne ; Gauthier-Rouvière, Cécile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-b324676a5e6c4bf641f11ae4d094f2890771b3534a0edaca367c0a1c089624e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cadherins</topic><topic>Cadherins - antagonists & inhibitors</topic><topic>Cadherins - metabolism</topic><topic>Cell Adhesion</topic><topic>Cell Fusion</topic><topic>Cell Line</topic><topic>Enzyme Activation</topic><topic>Guanine Nucleotide Exchange Factors</topic><topic>Guanine Nucleotide Exchange Factors - antagonists & inhibitors</topic><topic>Guanine Nucleotide Exchange Factors - genetics</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Multiprotein Complexes</topic><topic>Muscle Fibers</topic><topic>Muscle Fibers, Skeletal - cytology</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Myoblasts, Skeletal</topic><topic>Myoblasts, Skeletal - cytology</topic><topic>Myoblasts, Skeletal - metabolism</topic><topic>Neuropeptides</topic><topic>Neuropeptides - metabolism</topic><topic>Phosphoproteins</topic><topic>Phosphoproteins - antagonists & inhibitors</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>Protein-Serine-Threonine Kinases</topic><topic>Protein-Serine-Threonine Kinases - antagonists & inhibitors</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>rac GTP-Binding Proteins</topic><topic>rac GTP-Binding Proteins - metabolism</topic><topic>rac1 GTP-Binding Protein</topic><topic>RNA, Small Interfering</topic><topic>RNA, Small Interfering - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charrasse, Sophie</creatorcontrib><creatorcontrib>Comunale, Franck</creatorcontrib><creatorcontrib>Fortier, Mathieu</creatorcontrib><creatorcontrib>Portales-Casamar, Elodie</creatorcontrib><creatorcontrib>Debant, Anne</creatorcontrib><creatorcontrib>Gauthier-Rouvière, Cécile</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charrasse, Sophie</au><au>Comunale, Franck</au><au>Fortier, Mathieu</au><au>Portales-Casamar, Elodie</au><au>Debant, Anne</au><au>Gauthier-Rouvière, Cécile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2007-05</date><risdate>2007</risdate><volume>18</volume><issue>5</issue><spage>1734</spage><epage>1743</epage><pages>1734-1743</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Cadherins are transmembrane glycoproteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion and play crucial role during skeletal myogenesis. M-cadherin is required for myoblast fusion into myotubes, but its mechanisms of action remain unknown. The goal of this study was to cast some light on the nature of the M-cadherin-mediated signals involved in myoblast fusion into myotubes. We found that the Rac1 GTPase activity is increased at the time of myoblast fusion and it is required for this process. Moreover, we showed that M-cadherin-dependent adhesion activates Rac1 and demonstrated the formation of a multiproteic complex containing M-cadherin, the Rho-GEF Trio, and Rac1 at the onset of myoblast fusion. Interestingly, Trio knockdown efficiently blocked both the increase in Rac1-GTP levels, observed after M-cadherin-dependent contact formation, and myoblast fusion. We conclude that M-cadherin-dependent adhesion can activate Rac1 via the Rho-GEF Trio at the time of myoblast fusion.</abstract><cop>United States</cop><pub>American Society for Cell Biology</pub><pmid>17332503</pmid><doi>10.1091/mbc.E06-08-0766</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6620-1492</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-1524 |
ispartof | Molecular biology of the cell, 2007-05, Vol.18 (5), p.1734-1743 |
issn | 1059-1524 1939-4586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1855016 |
source | MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Base Sequence Biochemistry, Molecular Biology Cadherins Cadherins - antagonists & inhibitors Cadherins - metabolism Cell Adhesion Cell Fusion Cell Line Enzyme Activation Guanine Nucleotide Exchange Factors Guanine Nucleotide Exchange Factors - antagonists & inhibitors Guanine Nucleotide Exchange Factors - genetics Guanine Nucleotide Exchange Factors - metabolism Life Sciences Mice Multiprotein Complexes Muscle Fibers Muscle Fibers, Skeletal - cytology Muscle Fibers, Skeletal - metabolism Myoblasts, Skeletal Myoblasts, Skeletal - cytology Myoblasts, Skeletal - metabolism Neuropeptides Neuropeptides - metabolism Phosphoproteins Phosphoproteins - antagonists & inhibitors Phosphoproteins - genetics Phosphoproteins - metabolism Protein-Serine-Threonine Kinases Protein-Serine-Threonine Kinases - antagonists & inhibitors Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism rac GTP-Binding Proteins rac GTP-Binding Proteins - metabolism rac1 GTP-Binding Protein RNA, Small Interfering RNA, Small Interfering - genetics |
title | M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M-cadherin%20activates%20Rac1%20GTPase%20through%20the%20Rho-GEF%20trio%20during%20myoblast%20fusion&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Charrasse,%20Sophie&rft.date=2007-05&rft.volume=18&rft.issue=5&rft.spage=1734&rft.epage=1743&rft.pages=1734-1743&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E06-08-0766&rft_dat=%3Cproquest_pubme%3E70415153%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70415153&rft_id=info:pmid/17332503&rfr_iscdi=true |