Large-scale mapping of human protein-protein interactions by mass spectrometry
Mapping protein–protein interactions is an invaluable tool for understanding protein function. Here, we report the first large‐scale study of protein–protein interactions in human cells using a mass spectrometry‐based approach. The study maps protein interactions for 338 bait proteins that were sele...
Gespeichert in:
Veröffentlicht in: | Molecular systems biology 2007, Vol.3 (1), p.89-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mapping protein–protein interactions is an invaluable tool for understanding protein function. Here, we report the first large‐scale study of protein–protein interactions in human cells using a mass spectrometry‐based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large‐scale immunoprecipitation of Flag‐tagged versions of these proteins followed by LC‐ESI‐MS/MS analysis resulted in the identification of 24 540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross‐validated using previously published and predicted human protein interactions. In‐depth mining of the data set shows that it represents a valuable source of novel protein–protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations.
Synopsis
Understanding the roles and consequences of protein–protein interactions is a fundamental goal in cellular biology and a prerequisite for the development of molecular systems biology. The endeavor of cataloging protein interactions is primarily hindered by the throughput and reproducibility of existing technologies. Different techniques for mapping protein interactions are available, such as the two‐hybrid approach (Chien et al, 1991) and the LUMIER approach (Barrios‐Rodiles et al, 2005) and assay whether two proteins interact in a pair‐wise fashion. We have developed a high‐throughput platform combining immunoprecipitation and high‐throughput mass spectrometry (IP‐HTMS) to rapidly identify potentially novel protein interactions for a bait protein of interest. We (Ho et al, 2002) and others (Gavin et al, 2002) previously used this approach to map protein–protein interactions in yeast, creating invaluable data sets for yeast biology and extrapolation into mammalian biology.
Mapping protein interactions in human cells has its own set of challenges owing to the number of potentially expressed genes, the number of different cell types, and the numbers of internal and external factors that impact the cellular system. Although a complete mapping of the human interactome is still beyond current capabilities, more focused studies are possible. Here we report |
---|---|
ISSN: | 1744-4292 1744-4292 |
DOI: | 10.1038/msb4100134 |