Genetic Evidence for a SPO1-Dependent Signaling Pathway Controlling Meiotic Progression in Yeast

The yeast spindle pole body (SPB) plays a unique role in meiosis, initiating both spindle assembly and prospore membrane synthesis. SPO1, induced early in development, encodes a meiosis-specific phospholipase B (PLB) homolog required at three stages of SPB morphogenesis: MI, MII, and spore formation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2007-03, Vol.175 (3), p.1213-1227
Hauptverfasser: Tevzadze, Gela G, Pierce, Jessica V, Esposito, Rochelle Easton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1227
container_issue 3
container_start_page 1213
container_title Genetics (Austin)
container_volume 175
creator Tevzadze, Gela G
Pierce, Jessica V
Esposito, Rochelle Easton
description The yeast spindle pole body (SPB) plays a unique role in meiosis, initiating both spindle assembly and prospore membrane synthesis. SPO1, induced early in development, encodes a meiosis-specific phospholipase B (PLB) homolog required at three stages of SPB morphogenesis: MI, MII, and spore formation. Here we report in-depth analysis of the SPO1 gene including its transcriptional control by regulators of early gene expression, protein localization to the ER lumen and periplasmic space, and molecular genetic studies of its role in meiosis. Evidence is presented that multiple arrest points in spo1Delta occur independently, demonstrating that Spo1 acts at distinct steps. Loss of Spo1 is suppressed by high-copy glycosylphosphatidylinositol (GPI) proteins, dependent on sequence, timing, and strength of induction in meiosis. Since phosphatidylinositol (PI) serves as both an anchor component and a lipase substrate, we hypothesized that GPI-protein expression might substitute for Spo1 by decreasing levels of its potential substrates, PI and phosphatidylinositol phosphates (PIPs). Partial spo1Delta complementation by PLB3 (encoding a unique PLB capable of cleaving PI) and relatively strong Spo1 binding to PI(4)P derivatives (via a novel N-terminal lysine-rich fragment essential for Spo1 function) are consistent with this view. Epistasis of SPO1 mutations to those in SPO14 (encoding a PLD involved in signaling) and physical interaction of Spo1 with Spo23, a protein regulating PI synthesis required for wild-type sporulation, further support this notion. Taken together these findings implicate PI and/or PIPs in Spo1 function and suggest the existence of a novel Spo1-dependent meiosis-specific signaling pathway required for progression of MI, MII, and spore formation via regulation of the SPB.
doi_str_mv 10.1534/genetics.106.069252
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1840080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1265455641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-6227363a32835a00fd26191ccae81bcccaed2e6b4c1ea05129532b29afa19feb3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhEyChiAOcsnjsxIkvSGhpC1JRVyocOBnHO8m6ytqLnW3Ub1-HLH8vnEZ685s3Yz9CngNdQsmLNx06HKyJS6BiSYVkJXtAFiALnjPB4SFZUAoiFxWHE_IkxhtKE1XWj8kJVFBJWsOCfLuYXbKzW7tBZzBrfch0dr2-gvw97tEldciubed0b12XrfWwHfVdtvJuCL7_oX1C6yePdfBdwBitd5l12VfUcXhKHrW6j_jsWE_Jl_Ozz6sP-eXVxcfVu8vcFEU95IKxiguuOat5qSltN0yABGM01tCYqW4YiqYwgJqWwGTJWcOkbjXIFht-St7OvvtDs8ONSVcH3at9sDsd7pTXVv3dcXarOn-roC4orWkyeHU0CP77AeOgdjYa7Hvt0B-iqiinXJTFf0GQQk5pJPDlP-CNP4T0j1ExKABoVU1r-QyZ4GMM2P46GaiaclY_c06CUHPOaerFn6_9PXMMNgGvZ2Bru-1oA6q4032fcFDjOEJVKq6AAef3sPi0cw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214110770</pqid></control><display><type>article</type><title>Genetic Evidence for a SPO1-Dependent Signaling Pathway Controlling Meiotic Progression in Yeast</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Tevzadze, Gela G ; Pierce, Jessica V ; Esposito, Rochelle Easton</creator><creatorcontrib>Tevzadze, Gela G ; Pierce, Jessica V ; Esposito, Rochelle Easton</creatorcontrib><description>The yeast spindle pole body (SPB) plays a unique role in meiosis, initiating both spindle assembly and prospore membrane synthesis. SPO1, induced early in development, encodes a meiosis-specific phospholipase B (PLB) homolog required at three stages of SPB morphogenesis: MI, MII, and spore formation. Here we report in-depth analysis of the SPO1 gene including its transcriptional control by regulators of early gene expression, protein localization to the ER lumen and periplasmic space, and molecular genetic studies of its role in meiosis. Evidence is presented that multiple arrest points in spo1Delta occur independently, demonstrating that Spo1 acts at distinct steps. Loss of Spo1 is suppressed by high-copy glycosylphosphatidylinositol (GPI) proteins, dependent on sequence, timing, and strength of induction in meiosis. Since phosphatidylinositol (PI) serves as both an anchor component and a lipase substrate, we hypothesized that GPI-protein expression might substitute for Spo1 by decreasing levels of its potential substrates, PI and phosphatidylinositol phosphates (PIPs). Partial spo1Delta complementation by PLB3 (encoding a unique PLB capable of cleaving PI) and relatively strong Spo1 binding to PI(4)P derivatives (via a novel N-terminal lysine-rich fragment essential for Spo1 function) are consistent with this view. Epistasis of SPO1 mutations to those in SPO14 (encoding a PLD involved in signaling) and physical interaction of Spo1 with Spo23, a protein regulating PI synthesis required for wild-type sporulation, further support this notion. Taken together these findings implicate PI and/or PIPs in Spo1 function and suggest the existence of a novel Spo1-dependent meiosis-specific signaling pathway required for progression of MI, MII, and spore formation via regulation of the SPB.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.106.069252</identifier><identifier>PMID: 17179081</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>Blotting, Southern ; Blotting, Western ; Cell division ; E coli ; Gene Expression Regulation, Fungal ; Genetic recombination ; Immunoprecipitation ; Investigations ; Kinases ; Lysophospholipase - genetics ; Lysophospholipase - metabolism ; Meiosis - genetics ; Proteins ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Signal Transduction - genetics ; Spindle Apparatus - physiology ; Yeast</subject><ispartof>Genetics (Austin), 2007-03, Vol.175 (3), p.1213-1227</ispartof><rights>Copyright Genetics Society of America Mar 2007</rights><rights>Copyright © 2007 by the Genetics Society of America 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-6227363a32835a00fd26191ccae81bcccaed2e6b4c1ea05129532b29afa19feb3</citedby><cites>FETCH-LOGICAL-c448t-6227363a32835a00fd26191ccae81bcccaed2e6b4c1ea05129532b29afa19feb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17179081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tevzadze, Gela G</creatorcontrib><creatorcontrib>Pierce, Jessica V</creatorcontrib><creatorcontrib>Esposito, Rochelle Easton</creatorcontrib><title>Genetic Evidence for a SPO1-Dependent Signaling Pathway Controlling Meiotic Progression in Yeast</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>The yeast spindle pole body (SPB) plays a unique role in meiosis, initiating both spindle assembly and prospore membrane synthesis. SPO1, induced early in development, encodes a meiosis-specific phospholipase B (PLB) homolog required at three stages of SPB morphogenesis: MI, MII, and spore formation. Here we report in-depth analysis of the SPO1 gene including its transcriptional control by regulators of early gene expression, protein localization to the ER lumen and periplasmic space, and molecular genetic studies of its role in meiosis. Evidence is presented that multiple arrest points in spo1Delta occur independently, demonstrating that Spo1 acts at distinct steps. Loss of Spo1 is suppressed by high-copy glycosylphosphatidylinositol (GPI) proteins, dependent on sequence, timing, and strength of induction in meiosis. Since phosphatidylinositol (PI) serves as both an anchor component and a lipase substrate, we hypothesized that GPI-protein expression might substitute for Spo1 by decreasing levels of its potential substrates, PI and phosphatidylinositol phosphates (PIPs). Partial spo1Delta complementation by PLB3 (encoding a unique PLB capable of cleaving PI) and relatively strong Spo1 binding to PI(4)P derivatives (via a novel N-terminal lysine-rich fragment essential for Spo1 function) are consistent with this view. Epistasis of SPO1 mutations to those in SPO14 (encoding a PLD involved in signaling) and physical interaction of Spo1 with Spo23, a protein regulating PI synthesis required for wild-type sporulation, further support this notion. Taken together these findings implicate PI and/or PIPs in Spo1 function and suggest the existence of a novel Spo1-dependent meiosis-specific signaling pathway required for progression of MI, MII, and spore formation via regulation of the SPB.</description><subject>Blotting, Southern</subject><subject>Blotting, Western</subject><subject>Cell division</subject><subject>E coli</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genetic recombination</subject><subject>Immunoprecipitation</subject><subject>Investigations</subject><subject>Kinases</subject><subject>Lysophospholipase - genetics</subject><subject>Lysophospholipase - metabolism</subject><subject>Meiosis - genetics</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Signal Transduction - genetics</subject><subject>Spindle Apparatus - physiology</subject><subject>Yeast</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU9v1DAQxS0EokvhEyChiAOcsnjsxIkvSGhpC1JRVyocOBnHO8m6ytqLnW3Ub1-HLH8vnEZ685s3Yz9CngNdQsmLNx06HKyJS6BiSYVkJXtAFiALnjPB4SFZUAoiFxWHE_IkxhtKE1XWj8kJVFBJWsOCfLuYXbKzW7tBZzBrfch0dr2-gvw97tEldciubed0b12XrfWwHfVdtvJuCL7_oX1C6yePdfBdwBitd5l12VfUcXhKHrW6j_jsWE_Jl_Ozz6sP-eXVxcfVu8vcFEU95IKxiguuOat5qSltN0yABGM01tCYqW4YiqYwgJqWwGTJWcOkbjXIFht-St7OvvtDs8ONSVcH3at9sDsd7pTXVv3dcXarOn-roC4orWkyeHU0CP77AeOgdjYa7Hvt0B-iqiinXJTFf0GQQk5pJPDlP-CNP4T0j1ExKABoVU1r-QyZ4GMM2P46GaiaclY_c06CUHPOaerFn6_9PXMMNgGvZ2Bru-1oA6q4032fcFDjOEJVKq6AAef3sPi0cw</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Tevzadze, Gela G</creator><creator>Pierce, Jessica V</creator><creator>Esposito, Rochelle Easton</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><general>Copyright © 2007 by the Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070301</creationdate><title>Genetic Evidence for a SPO1-Dependent Signaling Pathway Controlling Meiotic Progression in Yeast</title><author>Tevzadze, Gela G ; Pierce, Jessica V ; Esposito, Rochelle Easton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-6227363a32835a00fd26191ccae81bcccaed2e6b4c1ea05129532b29afa19feb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Blotting, Southern</topic><topic>Blotting, Western</topic><topic>Cell division</topic><topic>E coli</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genetic recombination</topic><topic>Immunoprecipitation</topic><topic>Investigations</topic><topic>Kinases</topic><topic>Lysophospholipase - genetics</topic><topic>Lysophospholipase - metabolism</topic><topic>Meiosis - genetics</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Signal Transduction - genetics</topic><topic>Spindle Apparatus - physiology</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tevzadze, Gela G</creatorcontrib><creatorcontrib>Pierce, Jessica V</creatorcontrib><creatorcontrib>Esposito, Rochelle Easton</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tevzadze, Gela G</au><au>Pierce, Jessica V</au><au>Esposito, Rochelle Easton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Evidence for a SPO1-Dependent Signaling Pathway Controlling Meiotic Progression in Yeast</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>175</volume><issue>3</issue><spage>1213</spage><epage>1227</epage><pages>1213-1227</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>The yeast spindle pole body (SPB) plays a unique role in meiosis, initiating both spindle assembly and prospore membrane synthesis. SPO1, induced early in development, encodes a meiosis-specific phospholipase B (PLB) homolog required at three stages of SPB morphogenesis: MI, MII, and spore formation. Here we report in-depth analysis of the SPO1 gene including its transcriptional control by regulators of early gene expression, protein localization to the ER lumen and periplasmic space, and molecular genetic studies of its role in meiosis. Evidence is presented that multiple arrest points in spo1Delta occur independently, demonstrating that Spo1 acts at distinct steps. Loss of Spo1 is suppressed by high-copy glycosylphosphatidylinositol (GPI) proteins, dependent on sequence, timing, and strength of induction in meiosis. Since phosphatidylinositol (PI) serves as both an anchor component and a lipase substrate, we hypothesized that GPI-protein expression might substitute for Spo1 by decreasing levels of its potential substrates, PI and phosphatidylinositol phosphates (PIPs). Partial spo1Delta complementation by PLB3 (encoding a unique PLB capable of cleaving PI) and relatively strong Spo1 binding to PI(4)P derivatives (via a novel N-terminal lysine-rich fragment essential for Spo1 function) are consistent with this view. Epistasis of SPO1 mutations to those in SPO14 (encoding a PLD involved in signaling) and physical interaction of Spo1 with Spo23, a protein regulating PI synthesis required for wild-type sporulation, further support this notion. Taken together these findings implicate PI and/or PIPs in Spo1 function and suggest the existence of a novel Spo1-dependent meiosis-specific signaling pathway required for progression of MI, MII, and spore formation via regulation of the SPB.</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>17179081</pmid><doi>10.1534/genetics.106.069252</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-6731
ispartof Genetics (Austin), 2007-03, Vol.175 (3), p.1213-1227
issn 0016-6731
1943-2631
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1840080
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Blotting, Southern
Blotting, Western
Cell division
E coli
Gene Expression Regulation, Fungal
Genetic recombination
Immunoprecipitation
Investigations
Kinases
Lysophospholipase - genetics
Lysophospholipase - metabolism
Meiosis - genetics
Proteins
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Signal Transduction - genetics
Spindle Apparatus - physiology
Yeast
title Genetic Evidence for a SPO1-Dependent Signaling Pathway Controlling Meiotic Progression in Yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Evidence%20for%20a%20SPO1-Dependent%20Signaling%20Pathway%20Controlling%20Meiotic%20Progression%20in%20Yeast&rft.jtitle=Genetics%20(Austin)&rft.au=Tevzadze,%20Gela%20G&rft.date=2007-03-01&rft.volume=175&rft.issue=3&rft.spage=1213&rft.epage=1227&rft.pages=1213-1227&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.106.069252&rft_dat=%3Cproquest_pubme%3E1265455641%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214110770&rft_id=info:pmid/17179081&rfr_iscdi=true