Genetic Evidence for a SPO1-Dependent Signaling Pathway Controlling Meiotic Progression in Yeast
The yeast spindle pole body (SPB) plays a unique role in meiosis, initiating both spindle assembly and prospore membrane synthesis. SPO1, induced early in development, encodes a meiosis-specific phospholipase B (PLB) homolog required at three stages of SPB morphogenesis: MI, MII, and spore formation...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2007-03, Vol.175 (3), p.1213-1227 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1227 |
---|---|
container_issue | 3 |
container_start_page | 1213 |
container_title | Genetics (Austin) |
container_volume | 175 |
creator | Tevzadze, Gela G Pierce, Jessica V Esposito, Rochelle Easton |
description | The yeast spindle pole body (SPB) plays a unique role in meiosis, initiating both spindle assembly and prospore membrane synthesis. SPO1, induced early in development, encodes a meiosis-specific phospholipase B (PLB) homolog required at three stages of SPB morphogenesis: MI, MII, and spore formation. Here we report in-depth analysis of the SPO1 gene including its transcriptional control by regulators of early gene expression, protein localization to the ER lumen and periplasmic space, and molecular genetic studies of its role in meiosis. Evidence is presented that multiple arrest points in spo1Delta occur independently, demonstrating that Spo1 acts at distinct steps. Loss of Spo1 is suppressed by high-copy glycosylphosphatidylinositol (GPI) proteins, dependent on sequence, timing, and strength of induction in meiosis. Since phosphatidylinositol (PI) serves as both an anchor component and a lipase substrate, we hypothesized that GPI-protein expression might substitute for Spo1 by decreasing levels of its potential substrates, PI and phosphatidylinositol phosphates (PIPs). Partial spo1Delta complementation by PLB3 (encoding a unique PLB capable of cleaving PI) and relatively strong Spo1 binding to PI(4)P derivatives (via a novel N-terminal lysine-rich fragment essential for Spo1 function) are consistent with this view. Epistasis of SPO1 mutations to those in SPO14 (encoding a PLD involved in signaling) and physical interaction of Spo1 with Spo23, a protein regulating PI synthesis required for wild-type sporulation, further support this notion. Taken together these findings implicate PI and/or PIPs in Spo1 function and suggest the existence of a novel Spo1-dependent meiosis-specific signaling pathway required for progression of MI, MII, and spore formation via regulation of the SPB. |
doi_str_mv | 10.1534/genetics.106.069252 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1840080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1265455641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-6227363a32835a00fd26191ccae81bcccaed2e6b4c1ea05129532b29afa19feb3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhEyChiAOcsnjsxIkvSGhpC1JRVyocOBnHO8m6ytqLnW3Ub1-HLH8vnEZ685s3Yz9CngNdQsmLNx06HKyJS6BiSYVkJXtAFiALnjPB4SFZUAoiFxWHE_IkxhtKE1XWj8kJVFBJWsOCfLuYXbKzW7tBZzBrfch0dr2-gvw97tEldciubed0b12XrfWwHfVdtvJuCL7_oX1C6yePdfBdwBitd5l12VfUcXhKHrW6j_jsWE_Jl_Ozz6sP-eXVxcfVu8vcFEU95IKxiguuOat5qSltN0yABGM01tCYqW4YiqYwgJqWwGTJWcOkbjXIFht-St7OvvtDs8ONSVcH3at9sDsd7pTXVv3dcXarOn-roC4orWkyeHU0CP77AeOgdjYa7Hvt0B-iqiinXJTFf0GQQk5pJPDlP-CNP4T0j1ExKABoVU1r-QyZ4GMM2P46GaiaclY_c06CUHPOaerFn6_9PXMMNgGvZ2Bru-1oA6q4032fcFDjOEJVKq6AAef3sPi0cw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214110770</pqid></control><display><type>article</type><title>Genetic Evidence for a SPO1-Dependent Signaling Pathway Controlling Meiotic Progression in Yeast</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Tevzadze, Gela G ; Pierce, Jessica V ; Esposito, Rochelle Easton</creator><creatorcontrib>Tevzadze, Gela G ; Pierce, Jessica V ; Esposito, Rochelle Easton</creatorcontrib><description>The yeast spindle pole body (SPB) plays a unique role in meiosis, initiating both spindle assembly and prospore membrane synthesis. SPO1, induced early in development, encodes a meiosis-specific phospholipase B (PLB) homolog required at three stages of SPB morphogenesis: MI, MII, and spore formation. Here we report in-depth analysis of the SPO1 gene including its transcriptional control by regulators of early gene expression, protein localization to the ER lumen and periplasmic space, and molecular genetic studies of its role in meiosis. Evidence is presented that multiple arrest points in spo1Delta occur independently, demonstrating that Spo1 acts at distinct steps. Loss of Spo1 is suppressed by high-copy glycosylphosphatidylinositol (GPI) proteins, dependent on sequence, timing, and strength of induction in meiosis. Since phosphatidylinositol (PI) serves as both an anchor component and a lipase substrate, we hypothesized that GPI-protein expression might substitute for Spo1 by decreasing levels of its potential substrates, PI and phosphatidylinositol phosphates (PIPs). Partial spo1Delta complementation by PLB3 (encoding a unique PLB capable of cleaving PI) and relatively strong Spo1 binding to PI(4)P derivatives (via a novel N-terminal lysine-rich fragment essential for Spo1 function) are consistent with this view. Epistasis of SPO1 mutations to those in SPO14 (encoding a PLD involved in signaling) and physical interaction of Spo1 with Spo23, a protein regulating PI synthesis required for wild-type sporulation, further support this notion. Taken together these findings implicate PI and/or PIPs in Spo1 function and suggest the existence of a novel Spo1-dependent meiosis-specific signaling pathway required for progression of MI, MII, and spore formation via regulation of the SPB.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.106.069252</identifier><identifier>PMID: 17179081</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>Blotting, Southern ; Blotting, Western ; Cell division ; E coli ; Gene Expression Regulation, Fungal ; Genetic recombination ; Immunoprecipitation ; Investigations ; Kinases ; Lysophospholipase - genetics ; Lysophospholipase - metabolism ; Meiosis - genetics ; Proteins ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Signal Transduction - genetics ; Spindle Apparatus - physiology ; Yeast</subject><ispartof>Genetics (Austin), 2007-03, Vol.175 (3), p.1213-1227</ispartof><rights>Copyright Genetics Society of America Mar 2007</rights><rights>Copyright © 2007 by the Genetics Society of America 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-6227363a32835a00fd26191ccae81bcccaed2e6b4c1ea05129532b29afa19feb3</citedby><cites>FETCH-LOGICAL-c448t-6227363a32835a00fd26191ccae81bcccaed2e6b4c1ea05129532b29afa19feb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17179081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tevzadze, Gela G</creatorcontrib><creatorcontrib>Pierce, Jessica V</creatorcontrib><creatorcontrib>Esposito, Rochelle Easton</creatorcontrib><title>Genetic Evidence for a SPO1-Dependent Signaling Pathway Controlling Meiotic Progression in Yeast</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>The yeast spindle pole body (SPB) plays a unique role in meiosis, initiating both spindle assembly and prospore membrane synthesis. SPO1, induced early in development, encodes a meiosis-specific phospholipase B (PLB) homolog required at three stages of SPB morphogenesis: MI, MII, and spore formation. Here we report in-depth analysis of the SPO1 gene including its transcriptional control by regulators of early gene expression, protein localization to the ER lumen and periplasmic space, and molecular genetic studies of its role in meiosis. Evidence is presented that multiple arrest points in spo1Delta occur independently, demonstrating that Spo1 acts at distinct steps. Loss of Spo1 is suppressed by high-copy glycosylphosphatidylinositol (GPI) proteins, dependent on sequence, timing, and strength of induction in meiosis. Since phosphatidylinositol (PI) serves as both an anchor component and a lipase substrate, we hypothesized that GPI-protein expression might substitute for Spo1 by decreasing levels of its potential substrates, PI and phosphatidylinositol phosphates (PIPs). Partial spo1Delta complementation by PLB3 (encoding a unique PLB capable of cleaving PI) and relatively strong Spo1 binding to PI(4)P derivatives (via a novel N-terminal lysine-rich fragment essential for Spo1 function) are consistent with this view. Epistasis of SPO1 mutations to those in SPO14 (encoding a PLD involved in signaling) and physical interaction of Spo1 with Spo23, a protein regulating PI synthesis required for wild-type sporulation, further support this notion. Taken together these findings implicate PI and/or PIPs in Spo1 function and suggest the existence of a novel Spo1-dependent meiosis-specific signaling pathway required for progression of MI, MII, and spore formation via regulation of the SPB.</description><subject>Blotting, Southern</subject><subject>Blotting, Western</subject><subject>Cell division</subject><subject>E coli</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genetic recombination</subject><subject>Immunoprecipitation</subject><subject>Investigations</subject><subject>Kinases</subject><subject>Lysophospholipase - genetics</subject><subject>Lysophospholipase - metabolism</subject><subject>Meiosis - genetics</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Signal Transduction - genetics</subject><subject>Spindle Apparatus - physiology</subject><subject>Yeast</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU9v1DAQxS0EokvhEyChiAOcsnjsxIkvSGhpC1JRVyocOBnHO8m6ytqLnW3Ub1-HLH8vnEZ685s3Yz9CngNdQsmLNx06HKyJS6BiSYVkJXtAFiALnjPB4SFZUAoiFxWHE_IkxhtKE1XWj8kJVFBJWsOCfLuYXbKzW7tBZzBrfch0dr2-gvw97tEldciubed0b12XrfWwHfVdtvJuCL7_oX1C6yePdfBdwBitd5l12VfUcXhKHrW6j_jsWE_Jl_Ozz6sP-eXVxcfVu8vcFEU95IKxiguuOat5qSltN0yABGM01tCYqW4YiqYwgJqWwGTJWcOkbjXIFht-St7OvvtDs8ONSVcH3at9sDsd7pTXVv3dcXarOn-roC4orWkyeHU0CP77AeOgdjYa7Hvt0B-iqiinXJTFf0GQQk5pJPDlP-CNP4T0j1ExKABoVU1r-QyZ4GMM2P46GaiaclY_c06CUHPOaerFn6_9PXMMNgGvZ2Bru-1oA6q4032fcFDjOEJVKq6AAef3sPi0cw</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Tevzadze, Gela G</creator><creator>Pierce, Jessica V</creator><creator>Esposito, Rochelle Easton</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><general>Copyright © 2007 by the Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070301</creationdate><title>Genetic Evidence for a SPO1-Dependent Signaling Pathway Controlling Meiotic Progression in Yeast</title><author>Tevzadze, Gela G ; Pierce, Jessica V ; Esposito, Rochelle Easton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-6227363a32835a00fd26191ccae81bcccaed2e6b4c1ea05129532b29afa19feb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Blotting, Southern</topic><topic>Blotting, Western</topic><topic>Cell division</topic><topic>E coli</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genetic recombination</topic><topic>Immunoprecipitation</topic><topic>Investigations</topic><topic>Kinases</topic><topic>Lysophospholipase - genetics</topic><topic>Lysophospholipase - metabolism</topic><topic>Meiosis - genetics</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Signal Transduction - genetics</topic><topic>Spindle Apparatus - physiology</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tevzadze, Gela G</creatorcontrib><creatorcontrib>Pierce, Jessica V</creatorcontrib><creatorcontrib>Esposito, Rochelle Easton</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tevzadze, Gela G</au><au>Pierce, Jessica V</au><au>Esposito, Rochelle Easton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Evidence for a SPO1-Dependent Signaling Pathway Controlling Meiotic Progression in Yeast</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>175</volume><issue>3</issue><spage>1213</spage><epage>1227</epage><pages>1213-1227</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>The yeast spindle pole body (SPB) plays a unique role in meiosis, initiating both spindle assembly and prospore membrane synthesis. SPO1, induced early in development, encodes a meiosis-specific phospholipase B (PLB) homolog required at three stages of SPB morphogenesis: MI, MII, and spore formation. Here we report in-depth analysis of the SPO1 gene including its transcriptional control by regulators of early gene expression, protein localization to the ER lumen and periplasmic space, and molecular genetic studies of its role in meiosis. Evidence is presented that multiple arrest points in spo1Delta occur independently, demonstrating that Spo1 acts at distinct steps. Loss of Spo1 is suppressed by high-copy glycosylphosphatidylinositol (GPI) proteins, dependent on sequence, timing, and strength of induction in meiosis. Since phosphatidylinositol (PI) serves as both an anchor component and a lipase substrate, we hypothesized that GPI-protein expression might substitute for Spo1 by decreasing levels of its potential substrates, PI and phosphatidylinositol phosphates (PIPs). Partial spo1Delta complementation by PLB3 (encoding a unique PLB capable of cleaving PI) and relatively strong Spo1 binding to PI(4)P derivatives (via a novel N-terminal lysine-rich fragment essential for Spo1 function) are consistent with this view. Epistasis of SPO1 mutations to those in SPO14 (encoding a PLD involved in signaling) and physical interaction of Spo1 with Spo23, a protein regulating PI synthesis required for wild-type sporulation, further support this notion. Taken together these findings implicate PI and/or PIPs in Spo1 function and suggest the existence of a novel Spo1-dependent meiosis-specific signaling pathway required for progression of MI, MII, and spore formation via regulation of the SPB.</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>17179081</pmid><doi>10.1534/genetics.106.069252</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-6731 |
ispartof | Genetics (Austin), 2007-03, Vol.175 (3), p.1213-1227 |
issn | 0016-6731 1943-2631 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1840080 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Blotting, Southern Blotting, Western Cell division E coli Gene Expression Regulation, Fungal Genetic recombination Immunoprecipitation Investigations Kinases Lysophospholipase - genetics Lysophospholipase - metabolism Meiosis - genetics Proteins Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Signal Transduction - genetics Spindle Apparatus - physiology Yeast |
title | Genetic Evidence for a SPO1-Dependent Signaling Pathway Controlling Meiotic Progression in Yeast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Evidence%20for%20a%20SPO1-Dependent%20Signaling%20Pathway%20Controlling%20Meiotic%20Progression%20in%20Yeast&rft.jtitle=Genetics%20(Austin)&rft.au=Tevzadze,%20Gela%20G&rft.date=2007-03-01&rft.volume=175&rft.issue=3&rft.spage=1213&rft.epage=1227&rft.pages=1213-1227&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.106.069252&rft_dat=%3Cproquest_pubme%3E1265455641%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214110770&rft_id=info:pmid/17179081&rfr_iscdi=true |