Flexibility in DNA Recombination: Structure of the Lambda Integrase Catalytic Core
Lambda integrase is archetypic of site-specific recombinases that catalyze intermolecular DNA rearrangements without energetic input. DNA cleavage, strand exchange, and religation steps are linked by a covalent phosphotyrosine intermediate in which Tyr$^{342}$ is attached to the 3′-phosphate of the...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1997-04, Vol.276 (5309), p.126-131 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 5309 |
container_start_page | 126 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 276 |
creator | Kwon, Hyock Joo Tirumalai, Radhakrishna Landy, Arthur Ellenberger, Tom |
description | Lambda integrase is archetypic of site-specific recombinases that catalyze intermolecular DNA rearrangements without energetic input. DNA cleavage, strand exchange, and religation steps are linked by a covalent phosphotyrosine intermediate in which Tyr$^{342}$ is attached to the 3′-phosphate of the DNA cut site. The 1.9 angstrom crystal structure of the integrase catalytic domain reveals a protein fold that is conserved in organisms ranging from archaebacteria to yeast and that suggests a model for interaction with target DNA. The attacking Tyr$^{342}$ nucleophile is located on a flexible loop about 20 angstroms from a basic groove that contains all the other catalytically essential residues. This bipartite active site can account for several apparently paradoxical features of integrase family recombinases, including the capacity for both cis and trans cleavage of DNA. |
doi_str_mv | 10.1126/science.276.5309.126 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1839824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A19318803</galeid><jstor_id>2892615</jstor_id><sourcerecordid>A19318803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c883t-e216be94f1329226a2ba101c342b5d7f8bec9f49a516566aa6f52f1f572405253</originalsourceid><addsrcrecordid>eNqN019rUzEUAPCLKLNOv8GEiwz1Ya35c5Ob-CDM6mqhrLCpryE3PbdLuU1mkivrtzejZVoZOvIQOOeXAzmcUxRHGI0wJvxdNBacgRGp-YhRJEc5-KgYYCTZUBJEHxcDhCgfClSzp8WzGFcI5ZykB8WBRIJIUQ2Ki7MObmxjO5s2pXXlp_PT8gKMXzfW6WS9e19eptCb1AcofVumKyhnet0sdDl1CZZBRyjHOuluk6wpxz7A8-JJq7sIL3b3YfHt7PPX8ZfhbD6Zjk9nQyMETUMgmDcgqxZTIgnhmjQaI2xoRRq2qFvRgJFtJTXDnHGuNW8ZaXHLalIhRhg9LD5s6173zRoWBlwKulPXwa512CivrdrPOHullv6nwoJKQapc4PWuQPA_eohJrW000HXage-jqoXIPcoNOyze_BtWlNeY8v-XxEzwqhYkw1d_wZXvg8v9UgRTVjNc1RmdbNFSd6Csa33-h1mCg_wd76C1OXyKJcVCIJr58B6ezwLW1tzn3-75TBLcpKXuY1TTy_MH0_n3B9OPk4dSMZnt0ZP7qPFdB0tQebDG8z1ebbkJPsYA7d1YYKRut0fttkfl7VG326NyMD97-edI3T3arUvOH-_yOhrdtUE7Y-MdI5zUCN-yoy1bxeTD77SQhGNGfwGvJyeM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213575147</pqid></control><display><type>article</type><title>Flexibility in DNA Recombination: Structure of the Lambda Integrase Catalytic Core</title><source>MEDLINE</source><source>American Association for the Advancement of Science</source><source>JSTOR</source><creator>Kwon, Hyock Joo ; Tirumalai, Radhakrishna ; Landy, Arthur ; Ellenberger, Tom</creator><creatorcontrib>Kwon, Hyock Joo ; Tirumalai, Radhakrishna ; Landy, Arthur ; Ellenberger, Tom</creatorcontrib><description>Lambda integrase is archetypic of site-specific recombinases that catalyze intermolecular DNA rearrangements without energetic input. DNA cleavage, strand exchange, and religation steps are linked by a covalent phosphotyrosine intermediate in which Tyr$^{342}$ is attached to the 3′-phosphate of the DNA cut site. The 1.9 angstrom crystal structure of the integrase catalytic domain reveals a protein fold that is conserved in organisms ranging from archaebacteria to yeast and that suggests a model for interaction with target DNA. The attacking Tyr$^{342}$ nucleophile is located on a flexible loop about 20 angstroms from a basic groove that contains all the other catalytically essential residues. This bipartite active site can account for several apparently paradoxical features of integrase family recombinases, including the capacity for both cis and trans cleavage of DNA.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.276.5309.126</identifier><identifier>PMID: 9082984</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>Active sites ; Amino Acid Sequence ; Analytical, structural and metabolic biochemistry ; Attachment Sites, Microbiological ; Bacteriophage lambda - enzymology ; Bacteriophages ; Binding Sites ; Biochemistry ; Biological and medical sciences ; Cloning, Molecular ; Conserved Sequence ; Crystal structure ; Crystallography, X-Ray ; Crystals ; Deoxyribonucleic acid ; DNA ; DNA - metabolism ; DNA cleavage ; DNA Nucleotidyltransferases - chemistry ; DNA Nucleotidyltransferases - metabolism ; Enzymes and enzyme inhibitors ; Fundamental and applied biological sciences. Psychology ; Genetic recombination ; Hydrogen Bonding ; Hydrolases ; Integrases - chemistry ; Integrases - metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleophiles ; phage lambda ; Phosphates ; Physiological aspects ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein subunits ; Proteins ; Recombinant DNA ; Recombinases ; Recombination, Genetic ; Tyrosine - chemistry ; Tyrosine - metabolism ; Virus Integration</subject><ispartof>Science (American Association for the Advancement of Science), 1997-04, Vol.276 (5309), p.126-131</ispartof><rights>Copyright 1997 American Association for the Advancement of Science</rights><rights>1997 INIST-CNRS</rights><rights>COPYRIGHT 1997 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1997 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Apr 4, 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c883t-e216be94f1329226a2ba101c342b5d7f8bec9f49a516566aa6f52f1f572405253</citedby><cites>FETCH-LOGICAL-c883t-e216be94f1329226a2ba101c342b5d7f8bec9f49a516566aa6f52f1f572405253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2892615$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2892615$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,2884,2885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2627014$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9082984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwon, Hyock Joo</creatorcontrib><creatorcontrib>Tirumalai, Radhakrishna</creatorcontrib><creatorcontrib>Landy, Arthur</creatorcontrib><creatorcontrib>Ellenberger, Tom</creatorcontrib><title>Flexibility in DNA Recombination: Structure of the Lambda Integrase Catalytic Core</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Lambda integrase is archetypic of site-specific recombinases that catalyze intermolecular DNA rearrangements without energetic input. DNA cleavage, strand exchange, and religation steps are linked by a covalent phosphotyrosine intermediate in which Tyr$^{342}$ is attached to the 3′-phosphate of the DNA cut site. The 1.9 angstrom crystal structure of the integrase catalytic domain reveals a protein fold that is conserved in organisms ranging from archaebacteria to yeast and that suggests a model for interaction with target DNA. The attacking Tyr$^{342}$ nucleophile is located on a flexible loop about 20 angstroms from a basic groove that contains all the other catalytically essential residues. This bipartite active site can account for several apparently paradoxical features of integrase family recombinases, including the capacity for both cis and trans cleavage of DNA.</description><subject>Active sites</subject><subject>Amino Acid Sequence</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Attachment Sites, Microbiological</subject><subject>Bacteriophage lambda - enzymology</subject><subject>Bacteriophages</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Cloning, Molecular</subject><subject>Conserved Sequence</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Crystals</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA cleavage</subject><subject>DNA Nucleotidyltransferases - chemistry</subject><subject>DNA Nucleotidyltransferases - metabolism</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic recombination</subject><subject>Hydrogen Bonding</subject><subject>Hydrolases</subject><subject>Integrases - chemistry</subject><subject>Integrases - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Nucleophiles</subject><subject>phage lambda</subject><subject>Phosphates</subject><subject>Physiological aspects</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Protein subunits</subject><subject>Proteins</subject><subject>Recombinant DNA</subject><subject>Recombinases</subject><subject>Recombination, Genetic</subject><subject>Tyrosine - chemistry</subject><subject>Tyrosine - metabolism</subject><subject>Virus Integration</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN019rUzEUAPCLKLNOv8GEiwz1Ya35c5Ob-CDM6mqhrLCpryE3PbdLuU1mkivrtzejZVoZOvIQOOeXAzmcUxRHGI0wJvxdNBacgRGp-YhRJEc5-KgYYCTZUBJEHxcDhCgfClSzp8WzGFcI5ZykB8WBRIJIUQ2Ki7MObmxjO5s2pXXlp_PT8gKMXzfW6WS9e19eptCb1AcofVumKyhnet0sdDl1CZZBRyjHOuluk6wpxz7A8-JJq7sIL3b3YfHt7PPX8ZfhbD6Zjk9nQyMETUMgmDcgqxZTIgnhmjQaI2xoRRq2qFvRgJFtJTXDnHGuNW8ZaXHLalIhRhg9LD5s6173zRoWBlwKulPXwa512CivrdrPOHullv6nwoJKQapc4PWuQPA_eohJrW000HXage-jqoXIPcoNOyze_BtWlNeY8v-XxEzwqhYkw1d_wZXvg8v9UgRTVjNc1RmdbNFSd6Csa33-h1mCg_wd76C1OXyKJcVCIJr58B6ezwLW1tzn3-75TBLcpKXuY1TTy_MH0_n3B9OPk4dSMZnt0ZP7qPFdB0tQebDG8z1ebbkJPsYA7d1YYKRut0fttkfl7VG326NyMD97-edI3T3arUvOH-_yOhrdtUE7Y-MdI5zUCN-yoy1bxeTD77SQhGNGfwGvJyeM</recordid><startdate>19970404</startdate><enddate>19970404</enddate><creator>Kwon, Hyock Joo</creator><creator>Tirumalai, Radhakrishna</creator><creator>Landy, Arthur</creator><creator>Ellenberger, Tom</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19970404</creationdate><title>Flexibility in DNA Recombination: Structure of the Lambda Integrase Catalytic Core</title><author>Kwon, Hyock Joo ; Tirumalai, Radhakrishna ; Landy, Arthur ; Ellenberger, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c883t-e216be94f1329226a2ba101c342b5d7f8bec9f49a516566aa6f52f1f572405253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Active sites</topic><topic>Amino Acid Sequence</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Attachment Sites, Microbiological</topic><topic>Bacteriophage lambda - enzymology</topic><topic>Bacteriophages</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Cloning, Molecular</topic><topic>Conserved Sequence</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Crystals</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA cleavage</topic><topic>DNA Nucleotidyltransferases - chemistry</topic><topic>DNA Nucleotidyltransferases - metabolism</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic recombination</topic><topic>Hydrogen Bonding</topic><topic>Hydrolases</topic><topic>Integrases - chemistry</topic><topic>Integrases - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Nucleophiles</topic><topic>phage lambda</topic><topic>Phosphates</topic><topic>Physiological aspects</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Protein subunits</topic><topic>Proteins</topic><topic>Recombinant DNA</topic><topic>Recombinases</topic><topic>Recombination, Genetic</topic><topic>Tyrosine - chemistry</topic><topic>Tyrosine - metabolism</topic><topic>Virus Integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Hyock Joo</creatorcontrib><creatorcontrib>Tirumalai, Radhakrishna</creatorcontrib><creatorcontrib>Landy, Arthur</creatorcontrib><creatorcontrib>Ellenberger, Tom</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale in Context : Biography</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agricultural Science Database</collection><collection>Education Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Hyock Joo</au><au>Tirumalai, Radhakrishna</au><au>Landy, Arthur</au><au>Ellenberger, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexibility in DNA Recombination: Structure of the Lambda Integrase Catalytic Core</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1997-04-04</date><risdate>1997</risdate><volume>276</volume><issue>5309</issue><spage>126</spage><epage>131</epage><pages>126-131</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Lambda integrase is archetypic of site-specific recombinases that catalyze intermolecular DNA rearrangements without energetic input. DNA cleavage, strand exchange, and religation steps are linked by a covalent phosphotyrosine intermediate in which Tyr$^{342}$ is attached to the 3′-phosphate of the DNA cut site. The 1.9 angstrom crystal structure of the integrase catalytic domain reveals a protein fold that is conserved in organisms ranging from archaebacteria to yeast and that suggests a model for interaction with target DNA. The attacking Tyr$^{342}$ nucleophile is located on a flexible loop about 20 angstroms from a basic groove that contains all the other catalytically essential residues. This bipartite active site can account for several apparently paradoxical features of integrase family recombinases, including the capacity for both cis and trans cleavage of DNA.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>9082984</pmid><doi>10.1126/science.276.5309.126</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 1997-04, Vol.276 (5309), p.126-131 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1839824 |
source | MEDLINE; American Association for the Advancement of Science; JSTOR |
subjects | Active sites Amino Acid Sequence Analytical, structural and metabolic biochemistry Attachment Sites, Microbiological Bacteriophage lambda - enzymology Bacteriophages Binding Sites Biochemistry Biological and medical sciences Cloning, Molecular Conserved Sequence Crystal structure Crystallography, X-Ray Crystals Deoxyribonucleic acid DNA DNA - metabolism DNA cleavage DNA Nucleotidyltransferases - chemistry DNA Nucleotidyltransferases - metabolism Enzymes and enzyme inhibitors Fundamental and applied biological sciences. Psychology Genetic recombination Hydrogen Bonding Hydrolases Integrases - chemistry Integrases - metabolism Models, Molecular Molecular Sequence Data Nucleophiles phage lambda Phosphates Physiological aspects Protein Conformation Protein Folding Protein Structure, Secondary Protein subunits Proteins Recombinant DNA Recombinases Recombination, Genetic Tyrosine - chemistry Tyrosine - metabolism Virus Integration |
title | Flexibility in DNA Recombination: Structure of the Lambda Integrase Catalytic Core |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexibility%20in%20DNA%20Recombination:%20Structure%20of%20the%20Lambda%20Integrase%20Catalytic%20Core&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kwon,%20Hyock%20Joo&rft.date=1997-04-04&rft.volume=276&rft.issue=5309&rft.spage=126&rft.epage=131&rft.pages=126-131&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.276.5309.126&rft_dat=%3Cgale_pubme%3EA19318803%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213575147&rft_id=info:pmid/9082984&rft_galeid=A19318803&rft_jstor_id=2892615&rfr_iscdi=true |