Combining image features, case descriptions and UMLS concepts to improve retrieval of medical images
This paper evaluates a system, UBMedTIRS, for retrieval of medical images. The system uses a combination of image and text features as well as mapping of free text to UMLS concepts. UBMedTIRS combines three publicly available tools: a content-based image retrieval system (GIFT), a text retrieval sys...
Gespeichert in:
Veröffentlicht in: | AMIA ... Annual Symposium proceedings 2006, Vol.2006, p.674-678 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 678 |
---|---|
container_issue | |
container_start_page | 674 |
container_title | AMIA ... Annual Symposium proceedings |
container_volume | 2006 |
creator | Ruiz, Miguel E |
description | This paper evaluates a system, UBMedTIRS, for retrieval of medical images. The system uses a combination of image and text features as well as mapping of free text to UMLS concepts. UBMedTIRS combines three publicly available tools: a content-based image retrieval system (GIFT), a text retrieval system (SMART), and a tool for mapping free text to UMLS concepts (MetaMap). The system is evaluated using the ImageCLEFmed 2005 collection that contains approximately 50,000 medical images with associated text descriptions in English, French and German. Our experimental results indicate that the proposed approach yields significant improvements in retrieval performance. Our system performs 156% above the GIFT system and 42% above the text retrieval system. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1839585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68298714</sourcerecordid><originalsourceid>FETCH-LOGICAL-p179t-132edf6c02de7af7b08b43e2c2e34471953c5ce699673bb523d240acc907d9723</originalsourceid><addsrcrecordid>eNpVkFtLxDAQhYsg7nr5C5Innyy0uTTNiyCLN1jxQfc5pMl0jbRJTdIF_71BV9GnGZgz3zkzB8WyZkyUtOLNojiO8a2qKGdtc1Qsao5JS3GzLMzKj5111m2RHdUWUA8qzQHiJdIqAjIQdbBTst5FpJxBm8f1M9LeaZhSRMnntSn4HaAAKVjYqQH5Ho1grM7tFzOeFoe9GiKc7etJsbm9eVndl-unu4fV9bqcai5SWRMMpm90hQ1w1fOuajtKAGsMhFJeC0Y009AI0XDSdQwTg2mltBYVNyKfdFJcfXOnucsJNLgU1CCnkGOED-mVlf8nzr7Krd_JuiWCtSwDLvaA4N9niEmONmoYBuXAz1E2LRYtr2kWnv91-rX4eSz5BOnRdfo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68298714</pqid></control><display><type>article</type><title>Combining image features, case descriptions and UMLS concepts to improve retrieval of medical images</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Ruiz, Miguel E</creator><creatorcontrib>Ruiz, Miguel E</creatorcontrib><description>This paper evaluates a system, UBMedTIRS, for retrieval of medical images. The system uses a combination of image and text features as well as mapping of free text to UMLS concepts. UBMedTIRS combines three publicly available tools: a content-based image retrieval system (GIFT), a text retrieval system (SMART), and a tool for mapping free text to UMLS concepts (MetaMap). The system is evaluated using the ImageCLEFmed 2005 collection that contains approximately 50,000 medical images with associated text descriptions in English, French and German. Our experimental results indicate that the proposed approach yields significant improvements in retrieval performance. Our system performs 156% above the GIFT system and 42% above the text retrieval system.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 17238426</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Abstracting and Indexing ; Diagnostic Imaging ; Humans ; Information Storage and Retrieval - methods ; Medical Illustration ; Natural Language Processing ; Unified Medical Language System</subject><ispartof>AMIA ... Annual Symposium proceedings, 2006, Vol.2006, p.674-678</ispartof><rights>This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839585/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839585/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17238426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruiz, Miguel E</creatorcontrib><title>Combining image features, case descriptions and UMLS concepts to improve retrieval of medical images</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>This paper evaluates a system, UBMedTIRS, for retrieval of medical images. The system uses a combination of image and text features as well as mapping of free text to UMLS concepts. UBMedTIRS combines three publicly available tools: a content-based image retrieval system (GIFT), a text retrieval system (SMART), and a tool for mapping free text to UMLS concepts (MetaMap). The system is evaluated using the ImageCLEFmed 2005 collection that contains approximately 50,000 medical images with associated text descriptions in English, French and German. Our experimental results indicate that the proposed approach yields significant improvements in retrieval performance. Our system performs 156% above the GIFT system and 42% above the text retrieval system.</description><subject>Abstracting and Indexing</subject><subject>Diagnostic Imaging</subject><subject>Humans</subject><subject>Information Storage and Retrieval - methods</subject><subject>Medical Illustration</subject><subject>Natural Language Processing</subject><subject>Unified Medical Language System</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkFtLxDAQhYsg7nr5C5Innyy0uTTNiyCLN1jxQfc5pMl0jbRJTdIF_71BV9GnGZgz3zkzB8WyZkyUtOLNojiO8a2qKGdtc1Qsao5JS3GzLMzKj5111m2RHdUWUA8qzQHiJdIqAjIQdbBTst5FpJxBm8f1M9LeaZhSRMnntSn4HaAAKVjYqQH5Ho1grM7tFzOeFoe9GiKc7etJsbm9eVndl-unu4fV9bqcai5SWRMMpm90hQ1w1fOuajtKAGsMhFJeC0Y009AI0XDSdQwTg2mltBYVNyKfdFJcfXOnucsJNLgU1CCnkGOED-mVlf8nzr7Krd_JuiWCtSwDLvaA4N9niEmONmoYBuXAz1E2LRYtr2kWnv91-rX4eSz5BOnRdfo</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Ruiz, Miguel E</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2006</creationdate><title>Combining image features, case descriptions and UMLS concepts to improve retrieval of medical images</title><author>Ruiz, Miguel E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p179t-132edf6c02de7af7b08b43e2c2e34471953c5ce699673bb523d240acc907d9723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Abstracting and Indexing</topic><topic>Diagnostic Imaging</topic><topic>Humans</topic><topic>Information Storage and Retrieval - methods</topic><topic>Medical Illustration</topic><topic>Natural Language Processing</topic><topic>Unified Medical Language System</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz, Miguel E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz, Miguel E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining image features, case descriptions and UMLS concepts to improve retrieval of medical images</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2006</date><risdate>2006</risdate><volume>2006</volume><spage>674</spage><epage>678</epage><pages>674-678</pages><eissn>1559-4076</eissn><abstract>This paper evaluates a system, UBMedTIRS, for retrieval of medical images. The system uses a combination of image and text features as well as mapping of free text to UMLS concepts. UBMedTIRS combines three publicly available tools: a content-based image retrieval system (GIFT), a text retrieval system (SMART), and a tool for mapping free text to UMLS concepts (MetaMap). The system is evaluated using the ImageCLEFmed 2005 collection that contains approximately 50,000 medical images with associated text descriptions in English, French and German. Our experimental results indicate that the proposed approach yields significant improvements in retrieval performance. Our system performs 156% above the GIFT system and 42% above the text retrieval system.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>17238426</pmid><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1559-4076 |
ispartof | AMIA ... Annual Symposium proceedings, 2006, Vol.2006, p.674-678 |
issn | 1559-4076 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1839585 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Abstracting and Indexing Diagnostic Imaging Humans Information Storage and Retrieval - methods Medical Illustration Natural Language Processing Unified Medical Language System |
title | Combining image features, case descriptions and UMLS concepts to improve retrieval of medical images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20image%20features,%20case%20descriptions%20and%20UMLS%20concepts%20to%20improve%20retrieval%20of%20medical%20images&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Ruiz,%20Miguel%20E&rft.date=2006&rft.volume=2006&rft.spage=674&rft.epage=678&rft.pages=674-678&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E68298714%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68298714&rft_id=info:pmid/17238426&rfr_iscdi=true |