Combining image features, case descriptions and UMLS concepts to improve retrieval of medical images

This paper evaluates a system, UBMedTIRS, for retrieval of medical images. The system uses a combination of image and text features as well as mapping of free text to UMLS concepts. UBMedTIRS combines three publicly available tools: a content-based image retrieval system (GIFT), a text retrieval sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA ... Annual Symposium proceedings 2006, Vol.2006, p.674-678
1. Verfasser: Ruiz, Miguel E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 678
container_issue
container_start_page 674
container_title AMIA ... Annual Symposium proceedings
container_volume 2006
creator Ruiz, Miguel E
description This paper evaluates a system, UBMedTIRS, for retrieval of medical images. The system uses a combination of image and text features as well as mapping of free text to UMLS concepts. UBMedTIRS combines three publicly available tools: a content-based image retrieval system (GIFT), a text retrieval system (SMART), and a tool for mapping free text to UMLS concepts (MetaMap). The system is evaluated using the ImageCLEFmed 2005 collection that contains approximately 50,000 medical images with associated text descriptions in English, French and German. Our experimental results indicate that the proposed approach yields significant improvements in retrieval performance. Our system performs 156% above the GIFT system and 42% above the text retrieval system.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1839585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68298714</sourcerecordid><originalsourceid>FETCH-LOGICAL-p179t-132edf6c02de7af7b08b43e2c2e34471953c5ce699673bb523d240acc907d9723</originalsourceid><addsrcrecordid>eNpVkFtLxDAQhYsg7nr5C5Innyy0uTTNiyCLN1jxQfc5pMl0jbRJTdIF_71BV9GnGZgz3zkzB8WyZkyUtOLNojiO8a2qKGdtc1Qsao5JS3GzLMzKj5111m2RHdUWUA8qzQHiJdIqAjIQdbBTst5FpJxBm8f1M9LeaZhSRMnntSn4HaAAKVjYqQH5Ho1grM7tFzOeFoe9GiKc7etJsbm9eVndl-unu4fV9bqcai5SWRMMpm90hQ1w1fOuajtKAGsMhFJeC0Y009AI0XDSdQwTg2mltBYVNyKfdFJcfXOnucsJNLgU1CCnkGOED-mVlf8nzr7Krd_JuiWCtSwDLvaA4N9niEmONmoYBuXAz1E2LRYtr2kWnv91-rX4eSz5BOnRdfo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68298714</pqid></control><display><type>article</type><title>Combining image features, case descriptions and UMLS concepts to improve retrieval of medical images</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Ruiz, Miguel E</creator><creatorcontrib>Ruiz, Miguel E</creatorcontrib><description>This paper evaluates a system, UBMedTIRS, for retrieval of medical images. The system uses a combination of image and text features as well as mapping of free text to UMLS concepts. UBMedTIRS combines three publicly available tools: a content-based image retrieval system (GIFT), a text retrieval system (SMART), and a tool for mapping free text to UMLS concepts (MetaMap). The system is evaluated using the ImageCLEFmed 2005 collection that contains approximately 50,000 medical images with associated text descriptions in English, French and German. Our experimental results indicate that the proposed approach yields significant improvements in retrieval performance. Our system performs 156% above the GIFT system and 42% above the text retrieval system.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 17238426</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Abstracting and Indexing ; Diagnostic Imaging ; Humans ; Information Storage and Retrieval - methods ; Medical Illustration ; Natural Language Processing ; Unified Medical Language System</subject><ispartof>AMIA ... Annual Symposium proceedings, 2006, Vol.2006, p.674-678</ispartof><rights>This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839585/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839585/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17238426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruiz, Miguel E</creatorcontrib><title>Combining image features, case descriptions and UMLS concepts to improve retrieval of medical images</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>This paper evaluates a system, UBMedTIRS, for retrieval of medical images. The system uses a combination of image and text features as well as mapping of free text to UMLS concepts. UBMedTIRS combines three publicly available tools: a content-based image retrieval system (GIFT), a text retrieval system (SMART), and a tool for mapping free text to UMLS concepts (MetaMap). The system is evaluated using the ImageCLEFmed 2005 collection that contains approximately 50,000 medical images with associated text descriptions in English, French and German. Our experimental results indicate that the proposed approach yields significant improvements in retrieval performance. Our system performs 156% above the GIFT system and 42% above the text retrieval system.</description><subject>Abstracting and Indexing</subject><subject>Diagnostic Imaging</subject><subject>Humans</subject><subject>Information Storage and Retrieval - methods</subject><subject>Medical Illustration</subject><subject>Natural Language Processing</subject><subject>Unified Medical Language System</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkFtLxDAQhYsg7nr5C5Innyy0uTTNiyCLN1jxQfc5pMl0jbRJTdIF_71BV9GnGZgz3zkzB8WyZkyUtOLNojiO8a2qKGdtc1Qsao5JS3GzLMzKj5111m2RHdUWUA8qzQHiJdIqAjIQdbBTst5FpJxBm8f1M9LeaZhSRMnntSn4HaAAKVjYqQH5Ho1grM7tFzOeFoe9GiKc7etJsbm9eVndl-unu4fV9bqcai5SWRMMpm90hQ1w1fOuajtKAGsMhFJeC0Y009AI0XDSdQwTg2mltBYVNyKfdFJcfXOnucsJNLgU1CCnkGOED-mVlf8nzr7Krd_JuiWCtSwDLvaA4N9niEmONmoYBuXAz1E2LRYtr2kWnv91-rX4eSz5BOnRdfo</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Ruiz, Miguel E</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2006</creationdate><title>Combining image features, case descriptions and UMLS concepts to improve retrieval of medical images</title><author>Ruiz, Miguel E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p179t-132edf6c02de7af7b08b43e2c2e34471953c5ce699673bb523d240acc907d9723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Abstracting and Indexing</topic><topic>Diagnostic Imaging</topic><topic>Humans</topic><topic>Information Storage and Retrieval - methods</topic><topic>Medical Illustration</topic><topic>Natural Language Processing</topic><topic>Unified Medical Language System</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz, Miguel E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz, Miguel E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining image features, case descriptions and UMLS concepts to improve retrieval of medical images</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2006</date><risdate>2006</risdate><volume>2006</volume><spage>674</spage><epage>678</epage><pages>674-678</pages><eissn>1559-4076</eissn><abstract>This paper evaluates a system, UBMedTIRS, for retrieval of medical images. The system uses a combination of image and text features as well as mapping of free text to UMLS concepts. UBMedTIRS combines three publicly available tools: a content-based image retrieval system (GIFT), a text retrieval system (SMART), and a tool for mapping free text to UMLS concepts (MetaMap). The system is evaluated using the ImageCLEFmed 2005 collection that contains approximately 50,000 medical images with associated text descriptions in English, French and German. Our experimental results indicate that the proposed approach yields significant improvements in retrieval performance. Our system performs 156% above the GIFT system and 42% above the text retrieval system.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>17238426</pmid><tpages>5</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1559-4076
ispartof AMIA ... Annual Symposium proceedings, 2006, Vol.2006, p.674-678
issn 1559-4076
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1839585
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Abstracting and Indexing
Diagnostic Imaging
Humans
Information Storage and Retrieval - methods
Medical Illustration
Natural Language Processing
Unified Medical Language System
title Combining image features, case descriptions and UMLS concepts to improve retrieval of medical images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20image%20features,%20case%20descriptions%20and%20UMLS%20concepts%20to%20improve%20retrieval%20of%20medical%20images&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Ruiz,%20Miguel%20E&rft.date=2006&rft.volume=2006&rft.spage=674&rft.epage=678&rft.pages=674-678&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E68298714%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68298714&rft_id=info:pmid/17238426&rfr_iscdi=true