How to infer gene networks from expression profiles

Inferring, or ‘reverse‐engineering’, gene networks can be defined as the process of identifying gene interactions from experimental data through computational analysis. Gene expression data from microarrays are typically used for this purpose. Here we compared different reverse‐engineering algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular systems biology 2007, Vol.3 (1), p.78-n/a
Hauptverfasser: Bansal, Mukesh, Belcastro, Vincenzo, Ambesi‐Impiombato, Alberto, di Bernardo, Diego
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page 78
container_title Molecular systems biology
container_volume 3
creator Bansal, Mukesh
Belcastro, Vincenzo
Ambesi‐Impiombato, Alberto
di Bernardo, Diego
description Inferring, or ‘reverse‐engineering’, gene networks can be defined as the process of identifying gene interactions from experimental data through computational analysis. Gene expression data from microarrays are typically used for this purpose. Here we compared different reverse‐engineering algorithms for which ready‐to‐use software was available and that had been tested on experimental data sets. We show that reverse‐engineering algorithms are indeed able to correctly infer regulatory interactions among genes, at least when one performs perturbation experiments complying with the algorithm requirements. These algorithms are superior to classic clustering algorithms for the purpose of finding regulatory interactions among genes, and, although further improvements are needed, have reached a discreet performance for being practically useful.
doi_str_mv 10.1038/msb4100120
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1828749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300650248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4830-701a16d6729ab98b962fc62262d1f1bbcb66d8cc3f54f888328214790f92cd483</originalsourceid><addsrcrecordid>eNp9kUFPwyAUx4nRuDm9-AFMExMPmilQRuFioos6kxkP6pm0FGZnCxU657696BY7jfEECb_34__eA2AfwVMEY3ZW-YwgCBGGG6CLEkL6BHO8uXbvgB3vpzDAiOFt0EEJ5pygQRfEIzuPGhsVRisXTZRRkVHN3LoXH2lnq0i91055X1gT1c7qolR-F2zptPRqb3X2wNP11eNw1B_f39wOL8Z9SVgM-wlEKaI5DX-lGWcZp1hLijHFOdIoy2RGac6kjPWAaMZYjBlGJOFQcyzzoOiB86W3nmWVyqUyjUtLUbuiSt1C2LQQP19M8Swm9k2EJllCeBAcrQTOvs6Ub0RVeKnKMjXKzrygHEKSxEkAD3-BUztzJjQncAwhHUD8led4SUlnvXdKf0dBUHxuQrSbCPDBevgWXY0-AHgJzMNMF_-oxN3DZWs9WRb5wJuJcm3QPzJ8AAAnoCI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300650248</pqid></control><display><type>article</type><title>How to infer gene networks from expression profiles</title><source>Wiley-Blackwell Open Access Titles</source><creator>Bansal, Mukesh ; Belcastro, Vincenzo ; Ambesi‐Impiombato, Alberto ; di Bernardo, Diego</creator><creatorcontrib>Bansal, Mukesh ; Belcastro, Vincenzo ; Ambesi‐Impiombato, Alberto ; di Bernardo, Diego</creatorcontrib><description>Inferring, or ‘reverse‐engineering’, gene networks can be defined as the process of identifying gene interactions from experimental data through computational analysis. Gene expression data from microarrays are typically used for this purpose. Here we compared different reverse‐engineering algorithms for which ready‐to‐use software was available and that had been tested on experimental data sets. We show that reverse‐engineering algorithms are indeed able to correctly infer regulatory interactions among genes, at least when one performs perturbation experiments complying with the algorithm requirements. These algorithms are superior to classic clustering algorithms for the purpose of finding regulatory interactions among genes, and, although further improvements are needed, have reached a discreet performance for being practically useful.</description><identifier>ISSN: 1744-4292</identifier><identifier>EISSN: 1744-4292</identifier><identifier>DOI: 10.1038/msb4100120</identifier><identifier>PMID: 17299415</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Algorithms ; Clustering ; Computational Biology ; Computer applications ; DNA microarrays ; EMBO10 ; EMBO26 ; Engineering ; Experimental data ; Experiments ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation ; gene network ; gene regulation ; Gene Regulatory Networks ; Genes ; Oligonucleotide Array Sequence Analysis ; Perturbation ; Proteins ; reverse-engineering ; Review ; Software ; Systems Biology - methods ; transcriptional regulation</subject><ispartof>Molecular systems biology, 2007, Vol.3 (1), p.78-n/a</ispartof><rights>EMBO and Nature Publishing Group 2007</rights><rights>Copyright © 2007 EMBO and Nature Publishing Group</rights><rights>2007. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2007, EMBO and Nature Publishing Group 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4830-701a16d6729ab98b962fc62262d1f1bbcb66d8cc3f54f888328214790f92cd483</citedby><cites>FETCH-LOGICAL-c4830-701a16d6729ab98b962fc62262d1f1bbcb66d8cc3f54f888328214790f92cd483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1828749/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1828749/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,4010,11541,27900,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1038%2Fmsb4100120$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17299415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bansal, Mukesh</creatorcontrib><creatorcontrib>Belcastro, Vincenzo</creatorcontrib><creatorcontrib>Ambesi‐Impiombato, Alberto</creatorcontrib><creatorcontrib>di Bernardo, Diego</creatorcontrib><title>How to infer gene networks from expression profiles</title><title>Molecular systems biology</title><addtitle>Mol Syst Biol</addtitle><addtitle>Mol Syst Biol</addtitle><description>Inferring, or ‘reverse‐engineering’, gene networks can be defined as the process of identifying gene interactions from experimental data through computational analysis. Gene expression data from microarrays are typically used for this purpose. Here we compared different reverse‐engineering algorithms for which ready‐to‐use software was available and that had been tested on experimental data sets. We show that reverse‐engineering algorithms are indeed able to correctly infer regulatory interactions among genes, at least when one performs perturbation experiments complying with the algorithm requirements. These algorithms are superior to classic clustering algorithms for the purpose of finding regulatory interactions among genes, and, although further improvements are needed, have reached a discreet performance for being practically useful.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Computational Biology</subject><subject>Computer applications</subject><subject>DNA microarrays</subject><subject>EMBO10</subject><subject>EMBO26</subject><subject>Engineering</subject><subject>Experimental data</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation</subject><subject>gene network</subject><subject>gene regulation</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Perturbation</subject><subject>Proteins</subject><subject>reverse-engineering</subject><subject>Review</subject><subject>Software</subject><subject>Systems Biology - methods</subject><subject>transcriptional regulation</subject><issn>1744-4292</issn><issn>1744-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUFPwyAUx4nRuDm9-AFMExMPmilQRuFioos6kxkP6pm0FGZnCxU657696BY7jfEECb_34__eA2AfwVMEY3ZW-YwgCBGGG6CLEkL6BHO8uXbvgB3vpzDAiOFt0EEJ5pygQRfEIzuPGhsVRisXTZRRkVHN3LoXH2lnq0i91055X1gT1c7qolR-F2zptPRqb3X2wNP11eNw1B_f39wOL8Z9SVgM-wlEKaI5DX-lGWcZp1hLijHFOdIoy2RGac6kjPWAaMZYjBlGJOFQcyzzoOiB86W3nmWVyqUyjUtLUbuiSt1C2LQQP19M8Swm9k2EJllCeBAcrQTOvs6Ub0RVeKnKMjXKzrygHEKSxEkAD3-BUztzJjQncAwhHUD8led4SUlnvXdKf0dBUHxuQrSbCPDBevgWXY0-AHgJzMNMF_-oxN3DZWs9WRb5wJuJcm3QPzJ8AAAnoCI</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Bansal, Mukesh</creator><creator>Belcastro, Vincenzo</creator><creator>Ambesi‐Impiombato, Alberto</creator><creator>di Bernardo, Diego</creator><general>Nature Publishing Group UK</general><general>John Wiley &amp; Sons, Ltd</general><general>EMBO Press</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2007</creationdate><title>How to infer gene networks from expression profiles</title><author>Bansal, Mukesh ; Belcastro, Vincenzo ; Ambesi‐Impiombato, Alberto ; di Bernardo, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4830-701a16d6729ab98b962fc62262d1f1bbcb66d8cc3f54f888328214790f92cd483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Computational Biology</topic><topic>Computer applications</topic><topic>DNA microarrays</topic><topic>EMBO10</topic><topic>EMBO26</topic><topic>Engineering</topic><topic>Experimental data</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation</topic><topic>gene network</topic><topic>gene regulation</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Perturbation</topic><topic>Proteins</topic><topic>reverse-engineering</topic><topic>Review</topic><topic>Software</topic><topic>Systems Biology - methods</topic><topic>transcriptional regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bansal, Mukesh</creatorcontrib><creatorcontrib>Belcastro, Vincenzo</creatorcontrib><creatorcontrib>Ambesi‐Impiombato, Alberto</creatorcontrib><creatorcontrib>di Bernardo, Diego</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bansal, Mukesh</au><au>Belcastro, Vincenzo</au><au>Ambesi‐Impiombato, Alberto</au><au>di Bernardo, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to infer gene networks from expression profiles</atitle><jtitle>Molecular systems biology</jtitle><stitle>Mol Syst Biol</stitle><addtitle>Mol Syst Biol</addtitle><date>2007</date><risdate>2007</risdate><volume>3</volume><issue>1</issue><spage>78</spage><epage>n/a</epage><pages>78-n/a</pages><issn>1744-4292</issn><eissn>1744-4292</eissn><abstract>Inferring, or ‘reverse‐engineering’, gene networks can be defined as the process of identifying gene interactions from experimental data through computational analysis. Gene expression data from microarrays are typically used for this purpose. Here we compared different reverse‐engineering algorithms for which ready‐to‐use software was available and that had been tested on experimental data sets. We show that reverse‐engineering algorithms are indeed able to correctly infer regulatory interactions among genes, at least when one performs perturbation experiments complying with the algorithm requirements. These algorithms are superior to classic clustering algorithms for the purpose of finding regulatory interactions among genes, and, although further improvements are needed, have reached a discreet performance for being practically useful.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>17299415</pmid><doi>10.1038/msb4100120</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1744-4292
ispartof Molecular systems biology, 2007, Vol.3 (1), p.78-n/a
issn 1744-4292
1744-4292
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1828749
source Wiley-Blackwell Open Access Titles
subjects Algorithms
Clustering
Computational Biology
Computer applications
DNA microarrays
EMBO10
EMBO26
Engineering
Experimental data
Experiments
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation
gene network
gene regulation
Gene Regulatory Networks
Genes
Oligonucleotide Array Sequence Analysis
Perturbation
Proteins
reverse-engineering
Review
Software
Systems Biology - methods
transcriptional regulation
title How to infer gene networks from expression profiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20infer%20gene%20networks%20from%20expression%20profiles&rft.jtitle=Molecular%20systems%20biology&rft.au=Bansal,%20Mukesh&rft.date=2007&rft.volume=3&rft.issue=1&rft.spage=78&rft.epage=n/a&rft.pages=78-n/a&rft.issn=1744-4292&rft.eissn=1744-4292&rft_id=info:doi/10.1038/msb4100120&rft_dat=%3Cproquest_24P%3E2300650248%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300650248&rft_id=info:pmid/17299415&rfr_iscdi=true