AMP-activated protein kinase â development of the energy sensor concept
The LKB1âAMPK cascade is switched on by metabolic stresses that either inhibit ATP production (e.g. hypoxia, hypoglycaemia) or that accelerate ATP consumption (e.g. muscle contraction). Any decline in cellular energy status is accompanied by a rise in the cellular AMP: ATP ratio, and this activate...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 2006-07, Vol.574 (1), p.7-15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 1 |
container_start_page | 7 |
container_title | The Journal of physiology |
container_volume | 574 |
creator | Hardie, D. Grahame Hawley, Simon A. Scott, John W. |
description | The LKB1âAMPK cascade is switched on by metabolic stresses that either inhibit ATP production (e.g. hypoxia, hypoglycaemia)
or that accelerate ATP consumption (e.g. muscle contraction). Any decline in cellular energy status is accompanied by a rise
in the cellular AMP: ATP ratio, and this activates AMPK by a complex and sensitive mechanism involving antagonistic binding
of the nucleotides to two sites on the regulatory γ subunits of AMPK. Once activated by metabolic stress, AMPK activates catabolic
pathways that generate ATP, while inhibiting cell growth and biosynthesis and other processes that consume ATP. While the
AMPK system probably evolved in single-celled eukaryotes to maintain energy balance at the cellular level, in multicellular
organisms its role has become adapted so that it is also involved in maintaining whole body energy balance. Thus, it is regulated
by hormones and cytokines, especially the adipokines leptin and adiponectin, increasing whole body energy expenditure while
regulating food intake. Some hormones may activate AMPK by an LKB1-independent mechanism involving Ca 2+ /calmodulin dependent protein kinase kinases. Low levels of activation of AMPK are likely to play a role in the current global
rise in obesity and Type 2 diabetes, and AMPK is the target for the widely used antidiabetic drug metformin. |
doi_str_mv | 10.1113/jphysiol.2006.108944 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1817788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68592212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5834-2df003d9642eebd239bd87f18717d8f31cb1d5893e6429b614e684e19c4661793</originalsourceid><addsrcrecordid>eNqNkUuO1DAQhi0EYpqBGyCUDezSuGzHjw3SaAQDqBGzGNZW4lS6PaTjYKd7lB13mBtwlOFipJXmtYJVLer7f1XpI-Qp0CUA8JfX_WZMPrRLRqlcAtVGiHtkAUKaXCnD75MFpYzlXBVwQh6ldE0pcGrMQ3ICUgqhKV2Q1dmHy7x0g9-XA9ZZH8OAvss--65MmH3_dvf17jarcY9t6LfYDVlosmGDGXYY12OWsEshZi50DvvhMXnQlG3CJ8d5Sj69eX11_jZffbx4d362yl2huchZ3VDKayMFQ6xqxk1Va9WAVqBq3XBwFdSFNhwnwlQSBEotEIwTUsL02il5Nff2u2qLtZvuimVr--i3ZRxtKL39e9P5jV2HvQUNSmk9Fbw4FsTwZYdpsFufHLZt2WHYJSt1YRgD9k8QFCuoLA6gmEEXQ0oRm1_XALUHX_anL3vwZWdfU-zZn5_8Dh0FTYCZgRvf4vhfpfbq_SUU8lD-fM5u_Hpz4yPamU7BeRxGWyhhwSr-A5XytZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17250652</pqid></control><display><type>article</type><title>AMP-activated protein kinase â development of the energy sensor concept</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>IngentaConnect Open Access</source><source>Wiley Online Library Free Content</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Hardie, D. Grahame ; Hawley, Simon A. ; Scott, John W.</creator><creatorcontrib>Hardie, D. Grahame ; Hawley, Simon A. ; Scott, John W.</creatorcontrib><description>The LKB1âAMPK cascade is switched on by metabolic stresses that either inhibit ATP production (e.g. hypoxia, hypoglycaemia)
or that accelerate ATP consumption (e.g. muscle contraction). Any decline in cellular energy status is accompanied by a rise
in the cellular AMP: ATP ratio, and this activates AMPK by a complex and sensitive mechanism involving antagonistic binding
of the nucleotides to two sites on the regulatory γ subunits of AMPK. Once activated by metabolic stress, AMPK activates catabolic
pathways that generate ATP, while inhibiting cell growth and biosynthesis and other processes that consume ATP. While the
AMPK system probably evolved in single-celled eukaryotes to maintain energy balance at the cellular level, in multicellular
organisms its role has become adapted so that it is also involved in maintaining whole body energy balance. Thus, it is regulated
by hormones and cytokines, especially the adipokines leptin and adiponectin, increasing whole body energy expenditure while
regulating food intake. Some hormones may activate AMPK by an LKB1-independent mechanism involving Ca 2+ /calmodulin dependent protein kinase kinases. Low levels of activation of AMPK are likely to play a role in the current global
rise in obesity and Type 2 diabetes, and AMPK is the target for the widely used antidiabetic drug metformin.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2006.108944</identifier><identifier>PMID: 16644800</identifier><language>eng</language><publisher>Oxford, UK: The Physiological Society</publisher><subject>AMP-Activated Protein Kinases ; Animals ; Diabetes Mellitus - enzymology ; Energy Metabolism ; Humans ; Metabolic Syndrome - enzymology ; Multienzyme Complexes - metabolism ; Muscle, Skeletal - enzymology ; Myocardium - metabolism ; Obesity - enzymology ; Oxidative Stress ; Oxygen - metabolism ; Protein Serine-Threonine Kinases - metabolism ; Topical Reviews</subject><ispartof>The Journal of physiology, 2006-07, Vol.574 (1), p.7-15</ispartof><rights>2006 The Journal of Physiology © 2006 The Physiological Society</rights><rights>2006 The Authors. Journal compilation © 2006 The Physiological Society 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5834-2df003d9642eebd239bd87f18717d8f31cb1d5893e6429b614e684e19c4661793</citedby><cites>FETCH-LOGICAL-c5834-2df003d9642eebd239bd87f18717d8f31cb1d5893e6429b614e684e19c4661793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1817788/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1817788/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,45553,45554,46387,46811,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16644800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hardie, D. Grahame</creatorcontrib><creatorcontrib>Hawley, Simon A.</creatorcontrib><creatorcontrib>Scott, John W.</creatorcontrib><title>AMP-activated protein kinase â development of the energy sensor concept</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>The LKB1âAMPK cascade is switched on by metabolic stresses that either inhibit ATP production (e.g. hypoxia, hypoglycaemia)
or that accelerate ATP consumption (e.g. muscle contraction). Any decline in cellular energy status is accompanied by a rise
in the cellular AMP: ATP ratio, and this activates AMPK by a complex and sensitive mechanism involving antagonistic binding
of the nucleotides to two sites on the regulatory γ subunits of AMPK. Once activated by metabolic stress, AMPK activates catabolic
pathways that generate ATP, while inhibiting cell growth and biosynthesis and other processes that consume ATP. While the
AMPK system probably evolved in single-celled eukaryotes to maintain energy balance at the cellular level, in multicellular
organisms its role has become adapted so that it is also involved in maintaining whole body energy balance. Thus, it is regulated
by hormones and cytokines, especially the adipokines leptin and adiponectin, increasing whole body energy expenditure while
regulating food intake. Some hormones may activate AMPK by an LKB1-independent mechanism involving Ca 2+ /calmodulin dependent protein kinase kinases. Low levels of activation of AMPK are likely to play a role in the current global
rise in obesity and Type 2 diabetes, and AMPK is the target for the widely used antidiabetic drug metformin.</description><subject>AMP-Activated Protein Kinases</subject><subject>Animals</subject><subject>Diabetes Mellitus - enzymology</subject><subject>Energy Metabolism</subject><subject>Humans</subject><subject>Metabolic Syndrome - enzymology</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Muscle, Skeletal - enzymology</subject><subject>Myocardium - metabolism</subject><subject>Obesity - enzymology</subject><subject>Oxidative Stress</subject><subject>Oxygen - metabolism</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Topical Reviews</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUuO1DAQhi0EYpqBGyCUDezSuGzHjw3SaAQDqBGzGNZW4lS6PaTjYKd7lB13mBtwlOFipJXmtYJVLer7f1XpI-Qp0CUA8JfX_WZMPrRLRqlcAtVGiHtkAUKaXCnD75MFpYzlXBVwQh6ldE0pcGrMQ3ICUgqhKV2Q1dmHy7x0g9-XA9ZZH8OAvss--65MmH3_dvf17jarcY9t6LfYDVlosmGDGXYY12OWsEshZi50DvvhMXnQlG3CJ8d5Sj69eX11_jZffbx4d362yl2huchZ3VDKayMFQ6xqxk1Va9WAVqBq3XBwFdSFNhwnwlQSBEotEIwTUsL02il5Nff2u2qLtZvuimVr--i3ZRxtKL39e9P5jV2HvQUNSmk9Fbw4FsTwZYdpsFufHLZt2WHYJSt1YRgD9k8QFCuoLA6gmEEXQ0oRm1_XALUHX_anL3vwZWdfU-zZn5_8Dh0FTYCZgRvf4vhfpfbq_SUU8lD-fM5u_Hpz4yPamU7BeRxGWyhhwSr-A5XytZA</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Hardie, D. Grahame</creator><creator>Hawley, Simon A.</creator><creator>Scott, John W.</creator><general>The Physiological Society</general><general>Blackwell Publishing Ltd</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200607</creationdate><title>AMP-activated protein kinase â development of the energy sensor concept</title><author>Hardie, D. Grahame ; Hawley, Simon A. ; Scott, John W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5834-2df003d9642eebd239bd87f18717d8f31cb1d5893e6429b614e684e19c4661793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>AMP-Activated Protein Kinases</topic><topic>Animals</topic><topic>Diabetes Mellitus - enzymology</topic><topic>Energy Metabolism</topic><topic>Humans</topic><topic>Metabolic Syndrome - enzymology</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Muscle, Skeletal - enzymology</topic><topic>Myocardium - metabolism</topic><topic>Obesity - enzymology</topic><topic>Oxidative Stress</topic><topic>Oxygen - metabolism</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Topical Reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hardie, D. Grahame</creatorcontrib><creatorcontrib>Hawley, Simon A.</creatorcontrib><creatorcontrib>Scott, John W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hardie, D. Grahame</au><au>Hawley, Simon A.</au><au>Scott, John W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AMP-activated protein kinase â development of the energy sensor concept</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2006-07</date><risdate>2006</risdate><volume>574</volume><issue>1</issue><spage>7</spage><epage>15</epage><pages>7-15</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>The LKB1âAMPK cascade is switched on by metabolic stresses that either inhibit ATP production (e.g. hypoxia, hypoglycaemia)
or that accelerate ATP consumption (e.g. muscle contraction). Any decline in cellular energy status is accompanied by a rise
in the cellular AMP: ATP ratio, and this activates AMPK by a complex and sensitive mechanism involving antagonistic binding
of the nucleotides to two sites on the regulatory γ subunits of AMPK. Once activated by metabolic stress, AMPK activates catabolic
pathways that generate ATP, while inhibiting cell growth and biosynthesis and other processes that consume ATP. While the
AMPK system probably evolved in single-celled eukaryotes to maintain energy balance at the cellular level, in multicellular
organisms its role has become adapted so that it is also involved in maintaining whole body energy balance. Thus, it is regulated
by hormones and cytokines, especially the adipokines leptin and adiponectin, increasing whole body energy expenditure while
regulating food intake. Some hormones may activate AMPK by an LKB1-independent mechanism involving Ca 2+ /calmodulin dependent protein kinase kinases. Low levels of activation of AMPK are likely to play a role in the current global
rise in obesity and Type 2 diabetes, and AMPK is the target for the widely used antidiabetic drug metformin.</abstract><cop>Oxford, UK</cop><pub>The Physiological Society</pub><pmid>16644800</pmid><doi>10.1113/jphysiol.2006.108944</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3751 |
ispartof | The Journal of physiology, 2006-07, Vol.574 (1), p.7-15 |
issn | 0022-3751 1469-7793 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1817788 |
source | Wiley-Blackwell Journals; MEDLINE; IngentaConnect Open Access; Wiley Online Library Free Content; PubMed Central; EZB Electronic Journals Library |
subjects | AMP-Activated Protein Kinases Animals Diabetes Mellitus - enzymology Energy Metabolism Humans Metabolic Syndrome - enzymology Multienzyme Complexes - metabolism Muscle, Skeletal - enzymology Myocardium - metabolism Obesity - enzymology Oxidative Stress Oxygen - metabolism Protein Serine-Threonine Kinases - metabolism Topical Reviews |
title | AMP-activated protein kinase â development of the energy sensor concept |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AMP-activated%20protein%20kinase%20%C3%A2%C2%80%C2%93%20development%20of%20the%20energy%20sensor%20concept&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Hardie,%20D.%20Grahame&rft.date=2006-07&rft.volume=574&rft.issue=1&rft.spage=7&rft.epage=15&rft.pages=7-15&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2006.108944&rft_dat=%3Cproquest_pubme%3E68592212%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17250652&rft_id=info:pmid/16644800&rfr_iscdi=true |