AMP-activated protein kinase – development of the energy sensor concept

The LKB1→AMPK cascade is switched on by metabolic stresses that either inhibit ATP production (e.g. hypoxia, hypoglycaemia) or that accelerate ATP consumption (e.g. muscle contraction). Any decline in cellular energy status is accompanied by a rise in the cellular AMP: ATP ratio, and this activate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2006-07, Vol.574 (1), p.7-15
Hauptverfasser: Hardie, D. Grahame, Hawley, Simon A., Scott, John W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 7
container_title The Journal of physiology
container_volume 574
creator Hardie, D. Grahame
Hawley, Simon A.
Scott, John W.
description The LKB1→AMPK cascade is switched on by metabolic stresses that either inhibit ATP production (e.g. hypoxia, hypoglycaemia) or that accelerate ATP consumption (e.g. muscle contraction). Any decline in cellular energy status is accompanied by a rise in the cellular AMP: ATP ratio, and this activates AMPK by a complex and sensitive mechanism involving antagonistic binding of the nucleotides to two sites on the regulatory γ subunits of AMPK. Once activated by metabolic stress, AMPK activates catabolic pathways that generate ATP, while inhibiting cell growth and biosynthesis and other processes that consume ATP. While the AMPK system probably evolved in single-celled eukaryotes to maintain energy balance at the cellular level, in multicellular organisms its role has become adapted so that it is also involved in maintaining whole body energy balance. Thus, it is regulated by hormones and cytokines, especially the adipokines leptin and adiponectin, increasing whole body energy expenditure while regulating food intake. Some hormones may activate AMPK by an LKB1-independent mechanism involving Ca 2+ /calmodulin dependent protein kinase kinases. Low levels of activation of AMPK are likely to play a role in the current global rise in obesity and Type 2 diabetes, and AMPK is the target for the widely used antidiabetic drug metformin.
doi_str_mv 10.1113/jphysiol.2006.108944
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1817788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68592212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5834-2df003d9642eebd239bd87f18717d8f31cb1d5893e6429b614e684e19c4661793</originalsourceid><addsrcrecordid>eNqNkUuO1DAQhi0EYpqBGyCUDezSuGzHjw3SaAQDqBGzGNZW4lS6PaTjYKd7lB13mBtwlOFipJXmtYJVLer7f1XpI-Qp0CUA8JfX_WZMPrRLRqlcAtVGiHtkAUKaXCnD75MFpYzlXBVwQh6ldE0pcGrMQ3ICUgqhKV2Q1dmHy7x0g9-XA9ZZH8OAvss--65MmH3_dvf17jarcY9t6LfYDVlosmGDGXYY12OWsEshZi50DvvhMXnQlG3CJ8d5Sj69eX11_jZffbx4d362yl2huchZ3VDKayMFQ6xqxk1Va9WAVqBq3XBwFdSFNhwnwlQSBEotEIwTUsL02il5Nff2u2qLtZvuimVr--i3ZRxtKL39e9P5jV2HvQUNSmk9Fbw4FsTwZYdpsFufHLZt2WHYJSt1YRgD9k8QFCuoLA6gmEEXQ0oRm1_XALUHX_anL3vwZWdfU-zZn5_8Dh0FTYCZgRvf4vhfpfbq_SUU8lD-fM5u_Hpz4yPamU7BeRxGWyhhwSr-A5XytZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17250652</pqid></control><display><type>article</type><title>AMP-activated protein kinase – development of the energy sensor concept</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>IngentaConnect Open Access</source><source>Wiley Online Library Free Content</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Hardie, D. Grahame ; Hawley, Simon A. ; Scott, John W.</creator><creatorcontrib>Hardie, D. Grahame ; Hawley, Simon A. ; Scott, John W.</creatorcontrib><description>The LKB1→AMPK cascade is switched on by metabolic stresses that either inhibit ATP production (e.g. hypoxia, hypoglycaemia) or that accelerate ATP consumption (e.g. muscle contraction). Any decline in cellular energy status is accompanied by a rise in the cellular AMP: ATP ratio, and this activates AMPK by a complex and sensitive mechanism involving antagonistic binding of the nucleotides to two sites on the regulatory γ subunits of AMPK. Once activated by metabolic stress, AMPK activates catabolic pathways that generate ATP, while inhibiting cell growth and biosynthesis and other processes that consume ATP. While the AMPK system probably evolved in single-celled eukaryotes to maintain energy balance at the cellular level, in multicellular organisms its role has become adapted so that it is also involved in maintaining whole body energy balance. Thus, it is regulated by hormones and cytokines, especially the adipokines leptin and adiponectin, increasing whole body energy expenditure while regulating food intake. Some hormones may activate AMPK by an LKB1-independent mechanism involving Ca 2+ /calmodulin dependent protein kinase kinases. Low levels of activation of AMPK are likely to play a role in the current global rise in obesity and Type 2 diabetes, and AMPK is the target for the widely used antidiabetic drug metformin.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2006.108944</identifier><identifier>PMID: 16644800</identifier><language>eng</language><publisher>Oxford, UK: The Physiological Society</publisher><subject>AMP-Activated Protein Kinases ; Animals ; Diabetes Mellitus - enzymology ; Energy Metabolism ; Humans ; Metabolic Syndrome - enzymology ; Multienzyme Complexes - metabolism ; Muscle, Skeletal - enzymology ; Myocardium - metabolism ; Obesity - enzymology ; Oxidative Stress ; Oxygen - metabolism ; Protein Serine-Threonine Kinases - metabolism ; Topical Reviews</subject><ispartof>The Journal of physiology, 2006-07, Vol.574 (1), p.7-15</ispartof><rights>2006 The Journal of Physiology © 2006 The Physiological Society</rights><rights>2006 The Authors. Journal compilation © 2006 The Physiological Society 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5834-2df003d9642eebd239bd87f18717d8f31cb1d5893e6429b614e684e19c4661793</citedby><cites>FETCH-LOGICAL-c5834-2df003d9642eebd239bd87f18717d8f31cb1d5893e6429b614e684e19c4661793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1817788/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1817788/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,45553,45554,46387,46811,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16644800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hardie, D. Grahame</creatorcontrib><creatorcontrib>Hawley, Simon A.</creatorcontrib><creatorcontrib>Scott, John W.</creatorcontrib><title>AMP-activated protein kinase – development of the energy sensor concept</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>The LKB1→AMPK cascade is switched on by metabolic stresses that either inhibit ATP production (e.g. hypoxia, hypoglycaemia) or that accelerate ATP consumption (e.g. muscle contraction). Any decline in cellular energy status is accompanied by a rise in the cellular AMP: ATP ratio, and this activates AMPK by a complex and sensitive mechanism involving antagonistic binding of the nucleotides to two sites on the regulatory γ subunits of AMPK. Once activated by metabolic stress, AMPK activates catabolic pathways that generate ATP, while inhibiting cell growth and biosynthesis and other processes that consume ATP. While the AMPK system probably evolved in single-celled eukaryotes to maintain energy balance at the cellular level, in multicellular organisms its role has become adapted so that it is also involved in maintaining whole body energy balance. Thus, it is regulated by hormones and cytokines, especially the adipokines leptin and adiponectin, increasing whole body energy expenditure while regulating food intake. Some hormones may activate AMPK by an LKB1-independent mechanism involving Ca 2+ /calmodulin dependent protein kinase kinases. Low levels of activation of AMPK are likely to play a role in the current global rise in obesity and Type 2 diabetes, and AMPK is the target for the widely used antidiabetic drug metformin.</description><subject>AMP-Activated Protein Kinases</subject><subject>Animals</subject><subject>Diabetes Mellitus - enzymology</subject><subject>Energy Metabolism</subject><subject>Humans</subject><subject>Metabolic Syndrome - enzymology</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Muscle, Skeletal - enzymology</subject><subject>Myocardium - metabolism</subject><subject>Obesity - enzymology</subject><subject>Oxidative Stress</subject><subject>Oxygen - metabolism</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Topical Reviews</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUuO1DAQhi0EYpqBGyCUDezSuGzHjw3SaAQDqBGzGNZW4lS6PaTjYKd7lB13mBtwlOFipJXmtYJVLer7f1XpI-Qp0CUA8JfX_WZMPrRLRqlcAtVGiHtkAUKaXCnD75MFpYzlXBVwQh6ldE0pcGrMQ3ICUgqhKV2Q1dmHy7x0g9-XA9ZZH8OAvss--65MmH3_dvf17jarcY9t6LfYDVlosmGDGXYY12OWsEshZi50DvvhMXnQlG3CJ8d5Sj69eX11_jZffbx4d362yl2huchZ3VDKayMFQ6xqxk1Va9WAVqBq3XBwFdSFNhwnwlQSBEotEIwTUsL02il5Nff2u2qLtZvuimVr--i3ZRxtKL39e9P5jV2HvQUNSmk9Fbw4FsTwZYdpsFufHLZt2WHYJSt1YRgD9k8QFCuoLA6gmEEXQ0oRm1_XALUHX_anL3vwZWdfU-zZn5_8Dh0FTYCZgRvf4vhfpfbq_SUU8lD-fM5u_Hpz4yPamU7BeRxGWyhhwSr-A5XytZA</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Hardie, D. Grahame</creator><creator>Hawley, Simon A.</creator><creator>Scott, John W.</creator><general>The Physiological Society</general><general>Blackwell Publishing Ltd</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200607</creationdate><title>AMP-activated protein kinase – development of the energy sensor concept</title><author>Hardie, D. Grahame ; Hawley, Simon A. ; Scott, John W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5834-2df003d9642eebd239bd87f18717d8f31cb1d5893e6429b614e684e19c4661793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>AMP-Activated Protein Kinases</topic><topic>Animals</topic><topic>Diabetes Mellitus - enzymology</topic><topic>Energy Metabolism</topic><topic>Humans</topic><topic>Metabolic Syndrome - enzymology</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Muscle, Skeletal - enzymology</topic><topic>Myocardium - metabolism</topic><topic>Obesity - enzymology</topic><topic>Oxidative Stress</topic><topic>Oxygen - metabolism</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Topical Reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hardie, D. Grahame</creatorcontrib><creatorcontrib>Hawley, Simon A.</creatorcontrib><creatorcontrib>Scott, John W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hardie, D. Grahame</au><au>Hawley, Simon A.</au><au>Scott, John W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AMP-activated protein kinase – development of the energy sensor concept</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2006-07</date><risdate>2006</risdate><volume>574</volume><issue>1</issue><spage>7</spage><epage>15</epage><pages>7-15</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>The LKB1→AMPK cascade is switched on by metabolic stresses that either inhibit ATP production (e.g. hypoxia, hypoglycaemia) or that accelerate ATP consumption (e.g. muscle contraction). Any decline in cellular energy status is accompanied by a rise in the cellular AMP: ATP ratio, and this activates AMPK by a complex and sensitive mechanism involving antagonistic binding of the nucleotides to two sites on the regulatory γ subunits of AMPK. Once activated by metabolic stress, AMPK activates catabolic pathways that generate ATP, while inhibiting cell growth and biosynthesis and other processes that consume ATP. While the AMPK system probably evolved in single-celled eukaryotes to maintain energy balance at the cellular level, in multicellular organisms its role has become adapted so that it is also involved in maintaining whole body energy balance. Thus, it is regulated by hormones and cytokines, especially the adipokines leptin and adiponectin, increasing whole body energy expenditure while regulating food intake. Some hormones may activate AMPK by an LKB1-independent mechanism involving Ca 2+ /calmodulin dependent protein kinase kinases. Low levels of activation of AMPK are likely to play a role in the current global rise in obesity and Type 2 diabetes, and AMPK is the target for the widely used antidiabetic drug metformin.</abstract><cop>Oxford, UK</cop><pub>The Physiological Society</pub><pmid>16644800</pmid><doi>10.1113/jphysiol.2006.108944</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2006-07, Vol.574 (1), p.7-15
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1817788
source Wiley-Blackwell Journals; MEDLINE; IngentaConnect Open Access; Wiley Online Library Free Content; PubMed Central; EZB Electronic Journals Library
subjects AMP-Activated Protein Kinases
Animals
Diabetes Mellitus - enzymology
Energy Metabolism
Humans
Metabolic Syndrome - enzymology
Multienzyme Complexes - metabolism
Muscle, Skeletal - enzymology
Myocardium - metabolism
Obesity - enzymology
Oxidative Stress
Oxygen - metabolism
Protein Serine-Threonine Kinases - metabolism
Topical Reviews
title AMP-activated protein kinase – development of the energy sensor concept
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AMP-activated%20protein%20kinase%20%C3%A2%C2%80%C2%93%20development%20of%20the%20energy%20sensor%20concept&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Hardie,%20D.%20Grahame&rft.date=2006-07&rft.volume=574&rft.issue=1&rft.spage=7&rft.epage=15&rft.pages=7-15&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2006.108944&rft_dat=%3Cproquest_pubme%3E68592212%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17250652&rft_id=info:pmid/16644800&rfr_iscdi=true