ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context

Elucidating gene regulatory networks is crucial for understanding normal cell physiology and complex pathologic phenotypes. Existing computational methods for the genome-wide "reverse engineering" of such networks have been successful only for lower eukaryotes with simple genomes. Here we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2006-03, Vol.7 Suppl 1 (S1), p.S7-S7, Article S7
Hauptverfasser: Margolin, Adam A, Nemenman, Ilya, Basso, Katia, Wiggins, Chris, Stolovitzky, Gustavo, Dalla Favera, Riccardo, Califano, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S7
container_issue S1
container_start_page S7
container_title BMC bioinformatics
container_volume 7 Suppl 1
creator Margolin, Adam A
Nemenman, Ilya
Basso, Katia
Wiggins, Chris
Stolovitzky, Gustavo
Dalla Favera, Riccardo
Califano, Andrea
description Elucidating gene regulatory networks is crucial for understanding normal cell physiology and complex pathologic phenotypes. Existing computational methods for the genome-wide "reverse engineering" of such networks have been successful only for lower eukaryotes with simple genomes. Here we present ARACNE, a novel algorithm, using microarray expression profiles, specifically designed to scale up to the complexity of regulatory networks in mammalian cells, yet general enough to address a wider range of network deconvolution problems. This method uses an information theoretic approach to eliminate the majority of indirect interactions inferred by co-expression methods. We prove that ARACNE reconstructs the network exactly (asymptotically) if the effect of loops in the network topology is negligible, and we show that the algorithm works well in practice, even in the presence of numerous loops and complex topologies. We assess ARACNE's ability to reconstruct transcriptional regulatory networks using both a realistic synthetic dataset and a microarray dataset from human B cells. On synthetic datasets ARACNE achieves very low error rates and outperforms established methods, such as Relevance Networks and Bayesian Networks. Application to the deconvolution of genetic networks in human B cells demonstrates ARACNE's ability to infer validated transcriptional targets of the cMYC proto-oncogene. We also study the effects of misestimation of mutual information on network reconstruction, and show that algorithms based on mutual information ranking are more resilient to estimation errors. ARACNE shows promise in identifying direct transcriptional interactions in mammalian cellular networks, a problem that has challenged existing reverse engineering algorithms. This approach should enhance our ability to use microarray data to elucidate functional mechanisms that underlie cellular processes and to identify molecular targets of pharmacological compounds in mammalian cellular networks.
doi_str_mv 10.1186/1471-2105-7-s1-s7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1810318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68001089</sourcerecordid><originalsourceid>FETCH-LOGICAL-b572t-81a364930723a4b09f63802643f763fa4ca0cd74bc95a724c3b0212985c3e9ba3</originalsourceid><addsrcrecordid>eNp1kUlPxSAUhYnROP8AN4aVuyq3tIW6MHl5jonRxGFNKNI-tC0K1OHfS_NeHBJdQe499-NyDkI7QPYBeHEAGYMkBZInLPGQeLaE1r9qyz_ua2jD-0dCgHGSr6I1KFhKCZB11ExuJtOrk0MseyzbxjoTZh2urcNhprHTyvY-uEEFY3tsa9zofiw3QyuDdR-41-HNuiePTZzHnew62ZrIUrpto8bhCAj6PWyhlVq2Xm8vzk10f3pyNz1PLq_PLqaTy6TKWRoSDpIWWUlJ3E9mFSnrgnKSFhmtWUFrmSlJ1APLKlXmkqWZohVJIS15rqguK0k30dGc-zxUnX5Qug9OtuLZmU66D2GlEb87vZmJxr4K4EAo8Ag4ngMqY_8B_O4o24nRaDEaLZi4BXHLImZvsYezL4P2QXTGj6bIXtvBi4LHNAgvoxDmQuWs907XX08BEWPKf8J3f37ye2IRK_0EF7OlWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68001089</pqid></control><display><type>article</type><title>ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Margolin, Adam A ; Nemenman, Ilya ; Basso, Katia ; Wiggins, Chris ; Stolovitzky, Gustavo ; Dalla Favera, Riccardo ; Califano, Andrea</creator><creatorcontrib>Margolin, Adam A ; Nemenman, Ilya ; Basso, Katia ; Wiggins, Chris ; Stolovitzky, Gustavo ; Dalla Favera, Riccardo ; Califano, Andrea</creatorcontrib><description>Elucidating gene regulatory networks is crucial for understanding normal cell physiology and complex pathologic phenotypes. Existing computational methods for the genome-wide "reverse engineering" of such networks have been successful only for lower eukaryotes with simple genomes. Here we present ARACNE, a novel algorithm, using microarray expression profiles, specifically designed to scale up to the complexity of regulatory networks in mammalian cells, yet general enough to address a wider range of network deconvolution problems. This method uses an information theoretic approach to eliminate the majority of indirect interactions inferred by co-expression methods. We prove that ARACNE reconstructs the network exactly (asymptotically) if the effect of loops in the network topology is negligible, and we show that the algorithm works well in practice, even in the presence of numerous loops and complex topologies. We assess ARACNE's ability to reconstruct transcriptional regulatory networks using both a realistic synthetic dataset and a microarray dataset from human B cells. On synthetic datasets ARACNE achieves very low error rates and outperforms established methods, such as Relevance Networks and Bayesian Networks. Application to the deconvolution of genetic networks in human B cells demonstrates ARACNE's ability to infer validated transcriptional targets of the cMYC proto-oncogene. We also study the effects of misestimation of mutual information on network reconstruction, and show that algorithms based on mutual information ranking are more resilient to estimation errors. ARACNE shows promise in identifying direct transcriptional interactions in mammalian cellular networks, a problem that has challenged existing reverse engineering algorithms. This approach should enhance our ability to use microarray data to elucidate functional mechanisms that underlie cellular processes and to identify molecular targets of pharmacological compounds in mammalian cellular networks.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/1471-2105-7-s1-s7</identifier><identifier>PMID: 16723010</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Animals ; B-Lymphocytes - metabolism ; Computational Biology - methods ; Computer Simulation ; Gene Expression Profiling ; Gene Expression Regulation ; Humans ; Models, Statistical ; Neural Networks (Computer) ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Proceedings ; Reproducibility of Results ; Software ; Transcription, Genetic</subject><ispartof>BMC bioinformatics, 2006-03, Vol.7 Suppl 1 (S1), p.S7-S7, Article S7</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b572t-81a364930723a4b09f63802643f763fa4ca0cd74bc95a724c3b0212985c3e9ba3</citedby><cites>FETCH-LOGICAL-b572t-81a364930723a4b09f63802643f763fa4ca0cd74bc95a724c3b0212985c3e9ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1810318/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1810318/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16723010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Margolin, Adam A</creatorcontrib><creatorcontrib>Nemenman, Ilya</creatorcontrib><creatorcontrib>Basso, Katia</creatorcontrib><creatorcontrib>Wiggins, Chris</creatorcontrib><creatorcontrib>Stolovitzky, Gustavo</creatorcontrib><creatorcontrib>Dalla Favera, Riccardo</creatorcontrib><creatorcontrib>Califano, Andrea</creatorcontrib><title>ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Elucidating gene regulatory networks is crucial for understanding normal cell physiology and complex pathologic phenotypes. Existing computational methods for the genome-wide "reverse engineering" of such networks have been successful only for lower eukaryotes with simple genomes. Here we present ARACNE, a novel algorithm, using microarray expression profiles, specifically designed to scale up to the complexity of regulatory networks in mammalian cells, yet general enough to address a wider range of network deconvolution problems. This method uses an information theoretic approach to eliminate the majority of indirect interactions inferred by co-expression methods. We prove that ARACNE reconstructs the network exactly (asymptotically) if the effect of loops in the network topology is negligible, and we show that the algorithm works well in practice, even in the presence of numerous loops and complex topologies. We assess ARACNE's ability to reconstruct transcriptional regulatory networks using both a realistic synthetic dataset and a microarray dataset from human B cells. On synthetic datasets ARACNE achieves very low error rates and outperforms established methods, such as Relevance Networks and Bayesian Networks. Application to the deconvolution of genetic networks in human B cells demonstrates ARACNE's ability to infer validated transcriptional targets of the cMYC proto-oncogene. We also study the effects of misestimation of mutual information on network reconstruction, and show that algorithms based on mutual information ranking are more resilient to estimation errors. ARACNE shows promise in identifying direct transcriptional interactions in mammalian cellular networks, a problem that has challenged existing reverse engineering algorithms. This approach should enhance our ability to use microarray data to elucidate functional mechanisms that underlie cellular processes and to identify molecular targets of pharmacological compounds in mammalian cellular networks.</description><subject>Algorithms</subject><subject>Animals</subject><subject>B-Lymphocytes - metabolism</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>Models, Statistical</subject><subject>Neural Networks (Computer)</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Phenotype</subject><subject>Proceedings</subject><subject>Reproducibility of Results</subject><subject>Software</subject><subject>Transcription, Genetic</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUlPxSAUhYnROP8AN4aVuyq3tIW6MHl5jonRxGFNKNI-tC0K1OHfS_NeHBJdQe499-NyDkI7QPYBeHEAGYMkBZInLPGQeLaE1r9qyz_ua2jD-0dCgHGSr6I1KFhKCZB11ExuJtOrk0MseyzbxjoTZh2urcNhprHTyvY-uEEFY3tsa9zofiw3QyuDdR-41-HNuiePTZzHnew62ZrIUrpto8bhCAj6PWyhlVq2Xm8vzk10f3pyNz1PLq_PLqaTy6TKWRoSDpIWWUlJ3E9mFSnrgnKSFhmtWUFrmSlJ1APLKlXmkqWZohVJIS15rqguK0k30dGc-zxUnX5Qug9OtuLZmU66D2GlEb87vZmJxr4K4EAo8Ag4ngMqY_8B_O4o24nRaDEaLZi4BXHLImZvsYezL4P2QXTGj6bIXtvBi4LHNAgvoxDmQuWs907XX08BEWPKf8J3f37ye2IRK_0EF7OlWQ</recordid><startdate>20060320</startdate><enddate>20060320</enddate><creator>Margolin, Adam A</creator><creator>Nemenman, Ilya</creator><creator>Basso, Katia</creator><creator>Wiggins, Chris</creator><creator>Stolovitzky, Gustavo</creator><creator>Dalla Favera, Riccardo</creator><creator>Califano, Andrea</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060320</creationdate><title>ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context</title><author>Margolin, Adam A ; Nemenman, Ilya ; Basso, Katia ; Wiggins, Chris ; Stolovitzky, Gustavo ; Dalla Favera, Riccardo ; Califano, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b572t-81a364930723a4b09f63802643f763fa4ca0cd74bc95a724c3b0212985c3e9ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>B-Lymphocytes - metabolism</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>Models, Statistical</topic><topic>Neural Networks (Computer)</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Phenotype</topic><topic>Proceedings</topic><topic>Reproducibility of Results</topic><topic>Software</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Margolin, Adam A</creatorcontrib><creatorcontrib>Nemenman, Ilya</creatorcontrib><creatorcontrib>Basso, Katia</creatorcontrib><creatorcontrib>Wiggins, Chris</creatorcontrib><creatorcontrib>Stolovitzky, Gustavo</creatorcontrib><creatorcontrib>Dalla Favera, Riccardo</creatorcontrib><creatorcontrib>Califano, Andrea</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Margolin, Adam A</au><au>Nemenman, Ilya</au><au>Basso, Katia</au><au>Wiggins, Chris</au><au>Stolovitzky, Gustavo</au><au>Dalla Favera, Riccardo</au><au>Califano, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2006-03-20</date><risdate>2006</risdate><volume>7 Suppl 1</volume><issue>S1</issue><spage>S7</spage><epage>S7</epage><pages>S7-S7</pages><artnum>S7</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Elucidating gene regulatory networks is crucial for understanding normal cell physiology and complex pathologic phenotypes. Existing computational methods for the genome-wide "reverse engineering" of such networks have been successful only for lower eukaryotes with simple genomes. Here we present ARACNE, a novel algorithm, using microarray expression profiles, specifically designed to scale up to the complexity of regulatory networks in mammalian cells, yet general enough to address a wider range of network deconvolution problems. This method uses an information theoretic approach to eliminate the majority of indirect interactions inferred by co-expression methods. We prove that ARACNE reconstructs the network exactly (asymptotically) if the effect of loops in the network topology is negligible, and we show that the algorithm works well in practice, even in the presence of numerous loops and complex topologies. We assess ARACNE's ability to reconstruct transcriptional regulatory networks using both a realistic synthetic dataset and a microarray dataset from human B cells. On synthetic datasets ARACNE achieves very low error rates and outperforms established methods, such as Relevance Networks and Bayesian Networks. Application to the deconvolution of genetic networks in human B cells demonstrates ARACNE's ability to infer validated transcriptional targets of the cMYC proto-oncogene. We also study the effects of misestimation of mutual information on network reconstruction, and show that algorithms based on mutual information ranking are more resilient to estimation errors. ARACNE shows promise in identifying direct transcriptional interactions in mammalian cellular networks, a problem that has challenged existing reverse engineering algorithms. This approach should enhance our ability to use microarray data to elucidate functional mechanisms that underlie cellular processes and to identify molecular targets of pharmacological compounds in mammalian cellular networks.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>16723010</pmid><doi>10.1186/1471-2105-7-s1-s7</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2006-03, Vol.7 Suppl 1 (S1), p.S7-S7, Article S7
issn 1471-2105
1471-2105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1810318
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings; PubMed Central Open Access; Springer Nature OA Free Journals
subjects Algorithms
Animals
B-Lymphocytes - metabolism
Computational Biology - methods
Computer Simulation
Gene Expression Profiling
Gene Expression Regulation
Humans
Models, Statistical
Neural Networks (Computer)
Oligonucleotide Array Sequence Analysis
Phenotype
Proceedings
Reproducibility of Results
Software
Transcription, Genetic
title ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ARACNE:%20an%20algorithm%20for%20the%20reconstruction%20of%20gene%20regulatory%20networks%20in%20a%20mammalian%20cellular%20context&rft.jtitle=BMC%20bioinformatics&rft.au=Margolin,%20Adam%20A&rft.date=2006-03-20&rft.volume=7%20Suppl%201&rft.issue=S1&rft.spage=S7&rft.epage=S7&rft.pages=S7-S7&rft.artnum=S7&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-7-s1-s7&rft_dat=%3Cproquest_pubme%3E68001089%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68001089&rft_id=info:pmid/16723010&rfr_iscdi=true