Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli

Despite the fact that cold shock domain proteins (CSDPs) and glycine-rich RNA-binding proteins (GRPs) have been implicated to play a role during the cold adaptation process, their importance and function in eukaryotes, including plants, are largely unknown. To understand the functional role of plant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2007-01, Vol.35 (2), p.506-516
Hauptverfasser: Kim, Jin Sun, Park, Su Jung, Kwak, Kyung Jin, Kim, Yeon Ok, Kim, Joo Yeol, Song, Jinkyung, Jang, Boseung, Jung, Che-Hun, Kang, Hunseung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 516
container_issue 2
container_start_page 506
container_title Nucleic acids research
container_volume 35
creator Kim, Jin Sun
Park, Su Jung
Kwak, Kyung Jin
Kim, Yeon Ok
Kim, Joo Yeol
Song, Jinkyung
Jang, Boseung
Jung, Che-Hun
Kang, Hunseung
description Despite the fact that cold shock domain proteins (CSDPs) and glycine-rich RNA-binding proteins (GRPs) have been implicated to play a role during the cold adaptation process, their importance and function in eukaryotes, including plants, are largely unknown. To understand the functional role of plant CSDPs and GRPs in the cold response, two CSDPs (CSDP1 and CSDP2) and three GRPs (GRP2, GRP4 and GRP7) from Arabidopsis thaliana were investigated. Heterologous expression of CSDP1 or GRP7 complemented the cold sensitivity of BX04 mutant Escherichia coli that lack four cold shock proteins (CSPs) and is highly sensitive to cold stress, and resulted in better survival rate than control cells during incubation at low temperature. In contrast, CSDP2 and GRP4 had very little ability. Selective evolution of ligand by exponential enrichment (SELEX) revealed that GRP7 does not recognize specific RNAs but binds preferentially to G-rich RNA sequences. CSDP1 and GRP7 had DNA melting activity, and enhanced RNase activity. In contrast, CSDP2 and GRP4 had no DNA melting activity and did not enhance RNAase activity. Together, these results indicate that CSDPs and GRPs help E.coli grow and survive better during cold shock, and strongly imply that CSDP1 and GRP7 exhibit RNA chaperone activity during the cold adaptation process.
doi_str_mv 10.1093/nar/gkl1076
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1802614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkl1076</oup_id><sourcerecordid>1249209311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c627t-18d22995ee0e12c619fa13ac58d991dffca8b3e03bfc5429a255fd5d6826bf263</originalsourceid><addsrcrecordid>eNqF0kFv0zAUB_AIgVgZnLhDxIELCvOzYye-IJVqbEgVSMAktIv1Yjut19QOdorYF-Hzkq7VClx6suT30__ZTy_LngN5C0SyM4_xbLHqgFTiQTYBJmhRSkEfZhPCCC-AlPVJ9iSlG0KgBF4-zk6gAiFlLSbZ71noTJ6WQa9yE9bofN7HMFjnU47e5IvuVjtvi-j0Mv_yaVo0zhvnFwfVxrDOpxEbZ0KfXMqHJXYOPeYa78LWIxwvba63rdBgP-Dgwl1N25Tysed50ku77eFwy9zT7FGLXbLP9udpdvXh_Nvssph_vvg4m84LLWg1FFAbSqXk1hILVAuQLQJDzWsjJZi21Vg3zBLWtJqXVCLlvDXciJqKpqWCnWbvdrn9pllbo60fInaqj26N8VYFdOrfindLtQg_FdSECijHgNf7gBh-bGwa1NolbbsOvQ2bpEQtBZMUjkIKlFWloEchSF5yKLetX_0Hb8Im-nFcihIiqATGR_Rmh3QMKUXb3v8NiNqujxrXR-3XZ9Qv_h7Hwe735fC4sOmPJBU76NJgf91TjCslKlZxdfn9WjGYX8zfX88VGf3LnW8xKFxEl9TVV0qAEVKVrJKc_QEEqOnE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200629135</pqid></control><display><type>article</type><title>Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli</title><source>Oxford Journals Open Access Collection</source><creator>Kim, Jin Sun ; Park, Su Jung ; Kwak, Kyung Jin ; Kim, Yeon Ok ; Kim, Joo Yeol ; Song, Jinkyung ; Jang, Boseung ; Jung, Che-Hun ; Kang, Hunseung</creator><creatorcontrib>Kim, Jin Sun ; Park, Su Jung ; Kwak, Kyung Jin ; Kim, Yeon Ok ; Kim, Joo Yeol ; Song, Jinkyung ; Jang, Boseung ; Jung, Che-Hun ; Kang, Hunseung</creatorcontrib><description>Despite the fact that cold shock domain proteins (CSDPs) and glycine-rich RNA-binding proteins (GRPs) have been implicated to play a role during the cold adaptation process, their importance and function in eukaryotes, including plants, are largely unknown. To understand the functional role of plant CSDPs and GRPs in the cold response, two CSDPs (CSDP1 and CSDP2) and three GRPs (GRP2, GRP4 and GRP7) from Arabidopsis thaliana were investigated. Heterologous expression of CSDP1 or GRP7 complemented the cold sensitivity of BX04 mutant Escherichia coli that lack four cold shock proteins (CSPs) and is highly sensitive to cold stress, and resulted in better survival rate than control cells during incubation at low temperature. In contrast, CSDP2 and GRP4 had very little ability. Selective evolution of ligand by exponential enrichment (SELEX) revealed that GRP7 does not recognize specific RNAs but binds preferentially to G-rich RNA sequences. CSDP1 and GRP7 had DNA melting activity, and enhanced RNase activity. In contrast, CSDP2 and GRP4 had no DNA melting activity and did not enhance RNAase activity. Together, these results indicate that CSDPs and GRPs help E.coli grow and survive better during cold shock, and strongly imply that CSDP1 and GRP7 exhibit RNA chaperone activity during the cold adaptation process.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkl1076</identifier><identifier>PMID: 17169986</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Acclimatization ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis Proteins - physiology ; Arabidopsis thaliana ; Cell Division ; Cold Shock Proteins and Peptides ; Cold Temperature ; DNA-Binding Proteins - metabolism ; DNA-Binding Proteins - physiology ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - growth &amp; development ; Gene Expression Regulation, Plant ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; Molecular Chaperones - physiology ; Nucleic Acid Conformation ; RNA ; RNA - chemistry ; RNA - metabolism ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; RNA-Binding Proteins - physiology</subject><ispartof>Nucleic acids research, 2007-01, Vol.35 (2), p.506-516</ispartof><rights>2006 The Author(s) 2006</rights><rights>Copyright Oxford University Press(England) Jan 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c627t-18d22995ee0e12c619fa13ac58d991dffca8b3e03bfc5429a255fd5d6826bf263</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1802614/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1802614/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1604,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/nar/gkl1076$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17169986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jin Sun</creatorcontrib><creatorcontrib>Park, Su Jung</creatorcontrib><creatorcontrib>Kwak, Kyung Jin</creatorcontrib><creatorcontrib>Kim, Yeon Ok</creatorcontrib><creatorcontrib>Kim, Joo Yeol</creatorcontrib><creatorcontrib>Song, Jinkyung</creatorcontrib><creatorcontrib>Jang, Boseung</creatorcontrib><creatorcontrib>Jung, Che-Hun</creatorcontrib><creatorcontrib>Kang, Hunseung</creatorcontrib><title>Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Despite the fact that cold shock domain proteins (CSDPs) and glycine-rich RNA-binding proteins (GRPs) have been implicated to play a role during the cold adaptation process, their importance and function in eukaryotes, including plants, are largely unknown. To understand the functional role of plant CSDPs and GRPs in the cold response, two CSDPs (CSDP1 and CSDP2) and three GRPs (GRP2, GRP4 and GRP7) from Arabidopsis thaliana were investigated. Heterologous expression of CSDP1 or GRP7 complemented the cold sensitivity of BX04 mutant Escherichia coli that lack four cold shock proteins (CSPs) and is highly sensitive to cold stress, and resulted in better survival rate than control cells during incubation at low temperature. In contrast, CSDP2 and GRP4 had very little ability. Selective evolution of ligand by exponential enrichment (SELEX) revealed that GRP7 does not recognize specific RNAs but binds preferentially to G-rich RNA sequences. CSDP1 and GRP7 had DNA melting activity, and enhanced RNase activity. In contrast, CSDP2 and GRP4 had no DNA melting activity and did not enhance RNAase activity. Together, these results indicate that CSDPs and GRPs help E.coli grow and survive better during cold shock, and strongly imply that CSDP1 and GRP7 exhibit RNA chaperone activity during the cold adaptation process.</description><subject>Acclimatization</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Arabidopsis thaliana</subject><subject>Cell Division</subject><subject>Cold Shock Proteins and Peptides</subject><subject>Cold Temperature</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Gene Expression Regulation, Plant</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>Molecular Chaperones - physiology</subject><subject>Nucleic Acid Conformation</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA - metabolism</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>RNA-Binding Proteins - physiology</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0kFv0zAUB_AIgVgZnLhDxIELCvOzYye-IJVqbEgVSMAktIv1Yjut19QOdorYF-Hzkq7VClx6suT30__ZTy_LngN5C0SyM4_xbLHqgFTiQTYBJmhRSkEfZhPCCC-AlPVJ9iSlG0KgBF4-zk6gAiFlLSbZ71noTJ6WQa9yE9bofN7HMFjnU47e5IvuVjtvi-j0Mv_yaVo0zhvnFwfVxrDOpxEbZ0KfXMqHJXYOPeYa78LWIxwvba63rdBgP-Dgwl1N25Tysed50ku77eFwy9zT7FGLXbLP9udpdvXh_Nvssph_vvg4m84LLWg1FFAbSqXk1hILVAuQLQJDzWsjJZi21Vg3zBLWtJqXVCLlvDXciJqKpqWCnWbvdrn9pllbo60fInaqj26N8VYFdOrfindLtQg_FdSECijHgNf7gBh-bGwa1NolbbsOvQ2bpEQtBZMUjkIKlFWloEchSF5yKLetX_0Hb8Im-nFcihIiqATGR_Rmh3QMKUXb3v8NiNqujxrXR-3XZ9Qv_h7Hwe735fC4sOmPJBU76NJgf91TjCslKlZxdfn9WjGYX8zfX88VGf3LnW8xKFxEl9TVV0qAEVKVrJKc_QEEqOnE</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Kim, Jin Sun</creator><creator>Park, Su Jung</creator><creator>Kwak, Kyung Jin</creator><creator>Kim, Yeon Ok</creator><creator>Kim, Joo Yeol</creator><creator>Song, Jinkyung</creator><creator>Jang, Boseung</creator><creator>Jung, Che-Hun</creator><creator>Kang, Hunseung</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070101</creationdate><title>Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli</title><author>Kim, Jin Sun ; Park, Su Jung ; Kwak, Kyung Jin ; Kim, Yeon Ok ; Kim, Joo Yeol ; Song, Jinkyung ; Jang, Boseung ; Jung, Che-Hun ; Kang, Hunseung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c627t-18d22995ee0e12c619fa13ac58d991dffca8b3e03bfc5429a255fd5d6826bf263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acclimatization</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Arabidopsis thaliana</topic><topic>Cell Division</topic><topic>Cold Shock Proteins and Peptides</topic><topic>Cold Temperature</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Gene Expression Regulation, Plant</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>Molecular Chaperones - physiology</topic><topic>Nucleic Acid Conformation</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA - metabolism</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>RNA-Binding Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jin Sun</creatorcontrib><creatorcontrib>Park, Su Jung</creatorcontrib><creatorcontrib>Kwak, Kyung Jin</creatorcontrib><creatorcontrib>Kim, Yeon Ok</creatorcontrib><creatorcontrib>Kim, Joo Yeol</creatorcontrib><creatorcontrib>Song, Jinkyung</creatorcontrib><creatorcontrib>Jang, Boseung</creatorcontrib><creatorcontrib>Jung, Che-Hun</creatorcontrib><creatorcontrib>Kang, Hunseung</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Jin Sun</au><au>Park, Su Jung</au><au>Kwak, Kyung Jin</au><au>Kim, Yeon Ok</au><au>Kim, Joo Yeol</au><au>Song, Jinkyung</au><au>Jang, Boseung</au><au>Jung, Che-Hun</au><au>Kang, Hunseung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2007-01-01</date><risdate>2007</risdate><volume>35</volume><issue>2</issue><spage>506</spage><epage>516</epage><pages>506-516</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Despite the fact that cold shock domain proteins (CSDPs) and glycine-rich RNA-binding proteins (GRPs) have been implicated to play a role during the cold adaptation process, their importance and function in eukaryotes, including plants, are largely unknown. To understand the functional role of plant CSDPs and GRPs in the cold response, two CSDPs (CSDP1 and CSDP2) and three GRPs (GRP2, GRP4 and GRP7) from Arabidopsis thaliana were investigated. Heterologous expression of CSDP1 or GRP7 complemented the cold sensitivity of BX04 mutant Escherichia coli that lack four cold shock proteins (CSPs) and is highly sensitive to cold stress, and resulted in better survival rate than control cells during incubation at low temperature. In contrast, CSDP2 and GRP4 had very little ability. Selective evolution of ligand by exponential enrichment (SELEX) revealed that GRP7 does not recognize specific RNAs but binds preferentially to G-rich RNA sequences. CSDP1 and GRP7 had DNA melting activity, and enhanced RNase activity. In contrast, CSDP2 and GRP4 had no DNA melting activity and did not enhance RNAase activity. Together, these results indicate that CSDPs and GRPs help E.coli grow and survive better during cold shock, and strongly imply that CSDP1 and GRP7 exhibit RNA chaperone activity during the cold adaptation process.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>17169986</pmid><doi>10.1093/nar/gkl1076</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2007-01, Vol.35 (2), p.506-516
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1802614
source Oxford Journals Open Access Collection
subjects Acclimatization
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis Proteins - physiology
Arabidopsis thaliana
Cell Division
Cold Shock Proteins and Peptides
Cold Temperature
DNA-Binding Proteins - metabolism
DNA-Binding Proteins - physiology
Escherichia coli
Escherichia coli - genetics
Escherichia coli - growth & development
Gene Expression Regulation, Plant
Molecular Chaperones - genetics
Molecular Chaperones - metabolism
Molecular Chaperones - physiology
Nucleic Acid Conformation
RNA
RNA - chemistry
RNA - metabolism
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
RNA-Binding Proteins - physiology
title Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold%20shock%20domain%20proteins%20and%20glycine-rich%20RNA-binding%20proteins%20from%20Arabidopsis%20thaliana%20can%20promote%20the%20cold%20adaptation%20process%20in%20Escherichia%20coli&rft.jtitle=Nucleic%20acids%20research&rft.au=Kim,%20Jin%20Sun&rft.date=2007-01-01&rft.volume=35&rft.issue=2&rft.spage=506&rft.epage=516&rft.pages=506-516&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkl1076&rft_dat=%3Cproquest_TOX%3E1249209311%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200629135&rft_id=info:pmid/17169986&rft_oup_id=10.1093/nar/gkl1076&rfr_iscdi=true