Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms

Many genomic loci contain transcription units on both strands, therefore two oppositely oriented transcripts can overlap. Often, one strand codes for a protein, whereas the transcript from the other strand is non‐encoding. Such natural antisense transcripts (NATs) can negatively regulate the conjuga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2006-12, Vol.7 (12), p.1216-1222
Hauptverfasser: Lapidot, Michal, Pilpel, Yitzhak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1222
container_issue 12
container_start_page 1216
container_title EMBO reports
container_volume 7
creator Lapidot, Michal
Pilpel, Yitzhak
description Many genomic loci contain transcription units on both strands, therefore two oppositely oriented transcripts can overlap. Often, one strand codes for a protein, whereas the transcript from the other strand is non‐encoding. Such natural antisense transcripts (NATs) can negatively regulate the conjugated sense transcript. NATs are highly prevalent in a wide range of species—for example, around 15% of human protein‐encoding genes have an associated NAT. The regulatory mechanisms by which NATs act are diverse, as are the means to control their expression. Here, we review the current understanding of NAT function and its mechanistic basis, which has been gathered from both individual gene cases and genome‐wide studies. In parallel, we survey findings about the regulation of NAT transcription. Finally, we hypothesize that the regulation of antisense transcription might be tailored to its mode of action. According to this model, the observed relationship between the expression patterns of NATs and their targets might indicate the regulatory mechanism that is in action.
doi_str_mv 10.1038/sj.embor.7400857
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1794690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1172134301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6177-fb2312470cbaf8ff656c474175717f174b5ad045502b566f0f1c3471c3eabecc3</originalsourceid><addsrcrecordid>eNqFUU1v1DAUtBAVLYU7JxRx4Jat7cR2wgGprMq2qBSJD9Gb5Xift94m9mInlP33uE3oAge42JbfzHjGg9AzgmcEF9VRXM-ga3yYiRLjiokH6ICUvM4LIqqH05lScrmPHse4xhizWlSP0D4RpKhpLQ7Q9QKc7yC_sUvInOqHoNpMud5GcBGyPigXdbCb3nr3KtN-2LTWrTLbxyzAamjV7SDr_d3N0hoDAVz_a-bDNutAXylnYxefoD2j2ghPp_0QfXl78nl-mp9_WJzNj89zzYkQuWloQWgpsG6UqYzhjOtSlEQwQYQhomyYWuKSMUwbxrnBhuiiFGkB1YDWxSF6PepuhqaDpU6GUiq5CbZTYSu9svLPibNXcuW_SyLq9GM4CbycBIL_NkDsZWejhrZVDvwQJa8oZpRWCfjiL-DaD8GlcJKmPmjySBIIjyAdfIwBzL0TguVtjTKu5V2NcqoxUZ7_nmBHmHpLgHoE3NgWtv8VlCfv33zciZORGxPNrSDsTP_DUD5ybOzhx_17KlxLLgrB5NeLhZwvLj_xi3dzyYqf9__P4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208525501</pqid></control><display><type>article</type><title>Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Lapidot, Michal ; Pilpel, Yitzhak</creator><creatorcontrib>Lapidot, Michal ; Pilpel, Yitzhak</creatorcontrib><description>Many genomic loci contain transcription units on both strands, therefore two oppositely oriented transcripts can overlap. Often, one strand codes for a protein, whereas the transcript from the other strand is non‐encoding. Such natural antisense transcripts (NATs) can negatively regulate the conjugated sense transcript. NATs are highly prevalent in a wide range of species—for example, around 15% of human protein‐encoding genes have an associated NAT. The regulatory mechanisms by which NATs act are diverse, as are the means to control their expression. Here, we review the current understanding of NAT function and its mechanistic basis, which has been gathered from both individual gene cases and genome‐wide studies. In parallel, we survey findings about the regulation of NAT transcription. Finally, we hypothesize that the regulation of antisense transcription might be tailored to its mode of action. According to this model, the observed relationship between the expression patterns of NATs and their targets might indicate the regulatory mechanism that is in action.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.1038/sj.embor.7400857</identifier><identifier>PMID: 17139297</identifier><identifier>CODEN: ERMEAX</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Animals ; EMBO09 ; EMBO36 ; Gene expression ; Gene Expression Regulation ; Genome ; Genomics ; Humans ; Mode of action ; Models, Genetic ; Molecular biology ; natural antisense transcript (NAT) ; noise dampening ; regulatory RNA ; Review ; Ribonucleic acid ; RNA ; RNA interference ; RNA, Antisense - genetics ; RNA, Antisense - physiology ; tile array ; Transcription, Genetic ; Untranslated Regions</subject><ispartof>EMBO reports, 2006-12, Vol.7 (12), p.1216-1222</ispartof><rights>European Molecular Biology Organization 2006</rights><rights>Copyright © 2006 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Dec 2006</rights><rights>Copyright © 2006, European Molecular Biology Organization 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6177-fb2312470cbaf8ff656c474175717f174b5ad045502b566f0f1c3471c3eabecc3</citedby><cites>FETCH-LOGICAL-c6177-fb2312470cbaf8ff656c474175717f174b5ad045502b566f0f1c3471c3eabecc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794690/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794690/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,45553,45554,46387,46811,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17139297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lapidot, Michal</creatorcontrib><creatorcontrib>Pilpel, Yitzhak</creatorcontrib><title>Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Many genomic loci contain transcription units on both strands, therefore two oppositely oriented transcripts can overlap. Often, one strand codes for a protein, whereas the transcript from the other strand is non‐encoding. Such natural antisense transcripts (NATs) can negatively regulate the conjugated sense transcript. NATs are highly prevalent in a wide range of species—for example, around 15% of human protein‐encoding genes have an associated NAT. The regulatory mechanisms by which NATs act are diverse, as are the means to control their expression. Here, we review the current understanding of NAT function and its mechanistic basis, which has been gathered from both individual gene cases and genome‐wide studies. In parallel, we survey findings about the regulation of NAT transcription. Finally, we hypothesize that the regulation of antisense transcription might be tailored to its mode of action. According to this model, the observed relationship between the expression patterns of NATs and their targets might indicate the regulatory mechanism that is in action.</description><subject>Animals</subject><subject>EMBO09</subject><subject>EMBO36</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genome</subject><subject>Genomics</subject><subject>Humans</subject><subject>Mode of action</subject><subject>Models, Genetic</subject><subject>Molecular biology</subject><subject>natural antisense transcript (NAT)</subject><subject>noise dampening</subject><subject>regulatory RNA</subject><subject>Review</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA interference</subject><subject>RNA, Antisense - genetics</subject><subject>RNA, Antisense - physiology</subject><subject>tile array</subject><subject>Transcription, Genetic</subject><subject>Untranslated Regions</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFUU1v1DAUtBAVLYU7JxRx4Jat7cR2wgGprMq2qBSJD9Gb5Xift94m9mInlP33uE3oAge42JbfzHjGg9AzgmcEF9VRXM-ga3yYiRLjiokH6ICUvM4LIqqH05lScrmPHse4xhizWlSP0D4RpKhpLQ7Q9QKc7yC_sUvInOqHoNpMud5GcBGyPigXdbCb3nr3KtN-2LTWrTLbxyzAamjV7SDr_d3N0hoDAVz_a-bDNutAXylnYxefoD2j2ghPp_0QfXl78nl-mp9_WJzNj89zzYkQuWloQWgpsG6UqYzhjOtSlEQwQYQhomyYWuKSMUwbxrnBhuiiFGkB1YDWxSF6PepuhqaDpU6GUiq5CbZTYSu9svLPibNXcuW_SyLq9GM4CbycBIL_NkDsZWejhrZVDvwQJa8oZpRWCfjiL-DaD8GlcJKmPmjySBIIjyAdfIwBzL0TguVtjTKu5V2NcqoxUZ7_nmBHmHpLgHoE3NgWtv8VlCfv33zciZORGxPNrSDsTP_DUD5ybOzhx_17KlxLLgrB5NeLhZwvLj_xi3dzyYqf9__P4g</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Lapidot, Michal</creator><creator>Pilpel, Yitzhak</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200612</creationdate><title>Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms</title><author>Lapidot, Michal ; Pilpel, Yitzhak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6177-fb2312470cbaf8ff656c474175717f174b5ad045502b566f0f1c3471c3eabecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>EMBO09</topic><topic>EMBO36</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genome</topic><topic>Genomics</topic><topic>Humans</topic><topic>Mode of action</topic><topic>Models, Genetic</topic><topic>Molecular biology</topic><topic>natural antisense transcript (NAT)</topic><topic>noise dampening</topic><topic>regulatory RNA</topic><topic>Review</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA interference</topic><topic>RNA, Antisense - genetics</topic><topic>RNA, Antisense - physiology</topic><topic>tile array</topic><topic>Transcription, Genetic</topic><topic>Untranslated Regions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lapidot, Michal</creatorcontrib><creatorcontrib>Pilpel, Yitzhak</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lapidot, Michal</au><au>Pilpel, Yitzhak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2006-12</date><risdate>2006</risdate><volume>7</volume><issue>12</issue><spage>1216</spage><epage>1222</epage><pages>1216-1222</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><coden>ERMEAX</coden><abstract>Many genomic loci contain transcription units on both strands, therefore two oppositely oriented transcripts can overlap. Often, one strand codes for a protein, whereas the transcript from the other strand is non‐encoding. Such natural antisense transcripts (NATs) can negatively regulate the conjugated sense transcript. NATs are highly prevalent in a wide range of species—for example, around 15% of human protein‐encoding genes have an associated NAT. The regulatory mechanisms by which NATs act are diverse, as are the means to control their expression. Here, we review the current understanding of NAT function and its mechanistic basis, which has been gathered from both individual gene cases and genome‐wide studies. In parallel, we survey findings about the regulation of NAT transcription. Finally, we hypothesize that the regulation of antisense transcription might be tailored to its mode of action. According to this model, the observed relationship between the expression patterns of NATs and their targets might indicate the regulatory mechanism that is in action.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>17139297</pmid><doi>10.1038/sj.embor.7400857</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-221X
ispartof EMBO reports, 2006-12, Vol.7 (12), p.1216-1222
issn 1469-221X
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1794690
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
EMBO09
EMBO36
Gene expression
Gene Expression Regulation
Genome
Genomics
Humans
Mode of action
Models, Genetic
Molecular biology
natural antisense transcript (NAT)
noise dampening
regulatory RNA
Review
Ribonucleic acid
RNA
RNA interference
RNA, Antisense - genetics
RNA, Antisense - physiology
tile array
Transcription, Genetic
Untranslated Regions
title Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-wide%20natural%20antisense%20transcription:%20coupling%20its%20regulation%20to%20its%20different%20regulatory%20mechanisms&rft.jtitle=EMBO%20reports&rft.au=Lapidot,%20Michal&rft.date=2006-12&rft.volume=7&rft.issue=12&rft.spage=1216&rft.epage=1222&rft.pages=1216-1222&rft.issn=1469-221X&rft.eissn=1469-3178&rft.coden=ERMEAX&rft_id=info:doi/10.1038/sj.embor.7400857&rft_dat=%3Cproquest_pubme%3E1172134301%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208525501&rft_id=info:pmid/17139297&rfr_iscdi=true