Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms
Many genomic loci contain transcription units on both strands, therefore two oppositely oriented transcripts can overlap. Often, one strand codes for a protein, whereas the transcript from the other strand is non‐encoding. Such natural antisense transcripts (NATs) can negatively regulate the conjuga...
Gespeichert in:
Veröffentlicht in: | EMBO reports 2006-12, Vol.7 (12), p.1216-1222 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1222 |
---|---|
container_issue | 12 |
container_start_page | 1216 |
container_title | EMBO reports |
container_volume | 7 |
creator | Lapidot, Michal Pilpel, Yitzhak |
description | Many genomic loci contain transcription units on both strands, therefore two oppositely oriented transcripts can overlap. Often, one strand codes for a protein, whereas the transcript from the other strand is non‐encoding. Such natural antisense transcripts (NATs) can negatively regulate the conjugated sense transcript. NATs are highly prevalent in a wide range of species—for example, around 15% of human protein‐encoding genes have an associated NAT. The regulatory mechanisms by which NATs act are diverse, as are the means to control their expression. Here, we review the current understanding of NAT function and its mechanistic basis, which has been gathered from both individual gene cases and genome‐wide studies. In parallel, we survey findings about the regulation of NAT transcription. Finally, we hypothesize that the regulation of antisense transcription might be tailored to its mode of action. According to this model, the observed relationship between the expression patterns of NATs and their targets might indicate the regulatory mechanism that is in action. |
doi_str_mv | 10.1038/sj.embor.7400857 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1794690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1172134301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6177-fb2312470cbaf8ff656c474175717f174b5ad045502b566f0f1c3471c3eabecc3</originalsourceid><addsrcrecordid>eNqFUU1v1DAUtBAVLYU7JxRx4Jat7cR2wgGprMq2qBSJD9Gb5Xift94m9mInlP33uE3oAge42JbfzHjGg9AzgmcEF9VRXM-ga3yYiRLjiokH6ICUvM4LIqqH05lScrmPHse4xhizWlSP0D4RpKhpLQ7Q9QKc7yC_sUvInOqHoNpMud5GcBGyPigXdbCb3nr3KtN-2LTWrTLbxyzAamjV7SDr_d3N0hoDAVz_a-bDNutAXylnYxefoD2j2ghPp_0QfXl78nl-mp9_WJzNj89zzYkQuWloQWgpsG6UqYzhjOtSlEQwQYQhomyYWuKSMUwbxrnBhuiiFGkB1YDWxSF6PepuhqaDpU6GUiq5CbZTYSu9svLPibNXcuW_SyLq9GM4CbycBIL_NkDsZWejhrZVDvwQJa8oZpRWCfjiL-DaD8GlcJKmPmjySBIIjyAdfIwBzL0TguVtjTKu5V2NcqoxUZ7_nmBHmHpLgHoE3NgWtv8VlCfv33zciZORGxPNrSDsTP_DUD5ybOzhx_17KlxLLgrB5NeLhZwvLj_xi3dzyYqf9__P4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208525501</pqid></control><display><type>article</type><title>Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Lapidot, Michal ; Pilpel, Yitzhak</creator><creatorcontrib>Lapidot, Michal ; Pilpel, Yitzhak</creatorcontrib><description>Many genomic loci contain transcription units on both strands, therefore two oppositely oriented transcripts can overlap. Often, one strand codes for a protein, whereas the transcript from the other strand is non‐encoding. Such natural antisense transcripts (NATs) can negatively regulate the conjugated sense transcript. NATs are highly prevalent in a wide range of species—for example, around 15% of human protein‐encoding genes have an associated NAT. The regulatory mechanisms by which NATs act are diverse, as are the means to control their expression. Here, we review the current understanding of NAT function and its mechanistic basis, which has been gathered from both individual gene cases and genome‐wide studies. In parallel, we survey findings about the regulation of NAT transcription. Finally, we hypothesize that the regulation of antisense transcription might be tailored to its mode of action. According to this model, the observed relationship between the expression patterns of NATs and their targets might indicate the regulatory mechanism that is in action.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.1038/sj.embor.7400857</identifier><identifier>PMID: 17139297</identifier><identifier>CODEN: ERMEAX</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Animals ; EMBO09 ; EMBO36 ; Gene expression ; Gene Expression Regulation ; Genome ; Genomics ; Humans ; Mode of action ; Models, Genetic ; Molecular biology ; natural antisense transcript (NAT) ; noise dampening ; regulatory RNA ; Review ; Ribonucleic acid ; RNA ; RNA interference ; RNA, Antisense - genetics ; RNA, Antisense - physiology ; tile array ; Transcription, Genetic ; Untranslated Regions</subject><ispartof>EMBO reports, 2006-12, Vol.7 (12), p.1216-1222</ispartof><rights>European Molecular Biology Organization 2006</rights><rights>Copyright © 2006 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Dec 2006</rights><rights>Copyright © 2006, European Molecular Biology Organization 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6177-fb2312470cbaf8ff656c474175717f174b5ad045502b566f0f1c3471c3eabecc3</citedby><cites>FETCH-LOGICAL-c6177-fb2312470cbaf8ff656c474175717f174b5ad045502b566f0f1c3471c3eabecc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794690/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794690/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,45553,45554,46387,46811,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17139297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lapidot, Michal</creatorcontrib><creatorcontrib>Pilpel, Yitzhak</creatorcontrib><title>Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Many genomic loci contain transcription units on both strands, therefore two oppositely oriented transcripts can overlap. Often, one strand codes for a protein, whereas the transcript from the other strand is non‐encoding. Such natural antisense transcripts (NATs) can negatively regulate the conjugated sense transcript. NATs are highly prevalent in a wide range of species—for example, around 15% of human protein‐encoding genes have an associated NAT. The regulatory mechanisms by which NATs act are diverse, as are the means to control their expression. Here, we review the current understanding of NAT function and its mechanistic basis, which has been gathered from both individual gene cases and genome‐wide studies. In parallel, we survey findings about the regulation of NAT transcription. Finally, we hypothesize that the regulation of antisense transcription might be tailored to its mode of action. According to this model, the observed relationship between the expression patterns of NATs and their targets might indicate the regulatory mechanism that is in action.</description><subject>Animals</subject><subject>EMBO09</subject><subject>EMBO36</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genome</subject><subject>Genomics</subject><subject>Humans</subject><subject>Mode of action</subject><subject>Models, Genetic</subject><subject>Molecular biology</subject><subject>natural antisense transcript (NAT)</subject><subject>noise dampening</subject><subject>regulatory RNA</subject><subject>Review</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA interference</subject><subject>RNA, Antisense - genetics</subject><subject>RNA, Antisense - physiology</subject><subject>tile array</subject><subject>Transcription, Genetic</subject><subject>Untranslated Regions</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFUU1v1DAUtBAVLYU7JxRx4Jat7cR2wgGprMq2qBSJD9Gb5Xift94m9mInlP33uE3oAge42JbfzHjGg9AzgmcEF9VRXM-ga3yYiRLjiokH6ICUvM4LIqqH05lScrmPHse4xhizWlSP0D4RpKhpLQ7Q9QKc7yC_sUvInOqHoNpMud5GcBGyPigXdbCb3nr3KtN-2LTWrTLbxyzAamjV7SDr_d3N0hoDAVz_a-bDNutAXylnYxefoD2j2ghPp_0QfXl78nl-mp9_WJzNj89zzYkQuWloQWgpsG6UqYzhjOtSlEQwQYQhomyYWuKSMUwbxrnBhuiiFGkB1YDWxSF6PepuhqaDpU6GUiq5CbZTYSu9svLPibNXcuW_SyLq9GM4CbycBIL_NkDsZWejhrZVDvwQJa8oZpRWCfjiL-DaD8GlcJKmPmjySBIIjyAdfIwBzL0TguVtjTKu5V2NcqoxUZ7_nmBHmHpLgHoE3NgWtv8VlCfv33zciZORGxPNrSDsTP_DUD5ybOzhx_17KlxLLgrB5NeLhZwvLj_xi3dzyYqf9__P4g</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Lapidot, Michal</creator><creator>Pilpel, Yitzhak</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200612</creationdate><title>Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms</title><author>Lapidot, Michal ; Pilpel, Yitzhak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6177-fb2312470cbaf8ff656c474175717f174b5ad045502b566f0f1c3471c3eabecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>EMBO09</topic><topic>EMBO36</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genome</topic><topic>Genomics</topic><topic>Humans</topic><topic>Mode of action</topic><topic>Models, Genetic</topic><topic>Molecular biology</topic><topic>natural antisense transcript (NAT)</topic><topic>noise dampening</topic><topic>regulatory RNA</topic><topic>Review</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA interference</topic><topic>RNA, Antisense - genetics</topic><topic>RNA, Antisense - physiology</topic><topic>tile array</topic><topic>Transcription, Genetic</topic><topic>Untranslated Regions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lapidot, Michal</creatorcontrib><creatorcontrib>Pilpel, Yitzhak</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lapidot, Michal</au><au>Pilpel, Yitzhak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2006-12</date><risdate>2006</risdate><volume>7</volume><issue>12</issue><spage>1216</spage><epage>1222</epage><pages>1216-1222</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><coden>ERMEAX</coden><abstract>Many genomic loci contain transcription units on both strands, therefore two oppositely oriented transcripts can overlap. Often, one strand codes for a protein, whereas the transcript from the other strand is non‐encoding. Such natural antisense transcripts (NATs) can negatively regulate the conjugated sense transcript. NATs are highly prevalent in a wide range of species—for example, around 15% of human protein‐encoding genes have an associated NAT. The regulatory mechanisms by which NATs act are diverse, as are the means to control their expression. Here, we review the current understanding of NAT function and its mechanistic basis, which has been gathered from both individual gene cases and genome‐wide studies. In parallel, we survey findings about the regulation of NAT transcription. Finally, we hypothesize that the regulation of antisense transcription might be tailored to its mode of action. According to this model, the observed relationship between the expression patterns of NATs and their targets might indicate the regulatory mechanism that is in action.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>17139297</pmid><doi>10.1038/sj.embor.7400857</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-221X |
ispartof | EMBO reports, 2006-12, Vol.7 (12), p.1216-1222 |
issn | 1469-221X 1469-3178 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1794690 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals EMBO09 EMBO36 Gene expression Gene Expression Regulation Genome Genomics Humans Mode of action Models, Genetic Molecular biology natural antisense transcript (NAT) noise dampening regulatory RNA Review Ribonucleic acid RNA RNA interference RNA, Antisense - genetics RNA, Antisense - physiology tile array Transcription, Genetic Untranslated Regions |
title | Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-wide%20natural%20antisense%20transcription:%20coupling%20its%20regulation%20to%20its%20different%20regulatory%20mechanisms&rft.jtitle=EMBO%20reports&rft.au=Lapidot,%20Michal&rft.date=2006-12&rft.volume=7&rft.issue=12&rft.spage=1216&rft.epage=1222&rft.pages=1216-1222&rft.issn=1469-221X&rft.eissn=1469-3178&rft.coden=ERMEAX&rft_id=info:doi/10.1038/sj.embor.7400857&rft_dat=%3Cproquest_pubme%3E1172134301%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208525501&rft_id=info:pmid/17139297&rfr_iscdi=true |