Inferring the Cellular Origin of Voltage and Calcium Alternans from the Spatial Scales of Phase Reversal during Discordant Alternans

Beat-to-beat alternation of the action potential duration (APD) in paced cardiac cells has been linked to the onset of lethal arrhythmias. Both experimental and theoretical studies have shown that alternans at the single cell level can be caused by unstable membrane voltage ( V m) dynamics linked to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2007-02, Vol.92 (4), p.L33-L35
Hauptverfasser: Sato, Daisuke, Shiferaw, Yohannes, Qu, Zhilin, Garfinkel, Alan, Weiss, James N., Karma, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page L35
container_issue 4
container_start_page L33
container_title Biophysical journal
container_volume 92
creator Sato, Daisuke
Shiferaw, Yohannes
Qu, Zhilin
Garfinkel, Alan
Weiss, James N.
Karma, Alain
description Beat-to-beat alternation of the action potential duration (APD) in paced cardiac cells has been linked to the onset of lethal arrhythmias. Both experimental and theoretical studies have shown that alternans at the single cell level can be caused by unstable membrane voltage ( V m) dynamics linked to steep APD-restitution, or unstable intracellular calcium (Ca) cycling linked to high sensitivity of Ca release from the sarcoplasmic reticulum on sarcoplasmic reticulum Ca load. Identifying which of these two mechanisms is the primary cause of cellular alternans, however, has remained difficult since Ca and V m are bidirectionally coupled. Here, we use numerical simulations of a physiologically detailed ionic model to show that the origin of alternans can be inferred by measuring the length scales over which APD and Ca i alternans reverse phase during spatially discordant alternans. The main conclusion is that these scales are comparable to a few millimeters and equal when alternans is driven by APD restitution, but differ markedly when alternans is driven predominantly by unstable Ca cycling. In the latter case, APD alternans still reverses phase on a millimeter tissue scale due to electrotonic coupling, while Ca alternans reverses phase on a submillimeter cellular scale. These results show that experimentally accessible measurements of Ca i and V m in cardiac tissue can be used to shed light on the cellular origin of alternans.
doi_str_mv 10.1529/biophysj.106.100982
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1783870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349507709207</els_id><sourcerecordid>68964393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-332890af1054e75b5d976de8a95f5f87c3e856f4ae6987bdcf835055c1e133c63</originalsourceid><addsrcrecordid>eNqFkk1vEzEQhlcIRNPCL0BCFgduW8br9cceQKpCgUqViihwtRzvbOLIsYO9G6l3fjhuEyhwgINlyfO873x4quoZhVPKm-7VwsXt6iavTymIcqBTzYNqRnnb1ABKPKxmACBq1nb8qDrOeQ1AGw70cXVEJZUNA5hV3y_CgCm5sCTjCskcvZ-8SeQquaULJA7ka_SjWSIxoSdz462bNuTMj5iCCZkMKW7ulNdbMzrjybU1HvOt8OPKZCSfcIcpl0A_3WV567KNqTdhvHd5Uj0ajM_49HCfVF_enX-ef6gvr95fzM8ua8spH2vGGtWBGSjwFiVf8L6TokdlOj7wQUnLUHExtAZFp-Sit4NiHDi3FCljVrCT6s3edzstNthbDGMyXm-T25h0o6Nx-s9IcCu9jDtNpWJKQjF4eTBI8duEedSb0k6ZmQkYp6yF6kTLOvZfsIFWqFbSAr74C1zHqQzFF4ZyCQooLxDbQzbFnBMOv0qmoG93Qf_chfIg9H4Xiur5793eaw6fX4DXewDLzHcOk87WYbDYu4R21H10_0zwAyD4yPU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215708015</pqid></control><display><type>article</type><title>Inferring the Cellular Origin of Voltage and Calcium Alternans from the Spatial Scales of Phase Reversal during Discordant Alternans</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>PubMed Central</source><creator>Sato, Daisuke ; Shiferaw, Yohannes ; Qu, Zhilin ; Garfinkel, Alan ; Weiss, James N. ; Karma, Alain</creator><creatorcontrib>Sato, Daisuke ; Shiferaw, Yohannes ; Qu, Zhilin ; Garfinkel, Alan ; Weiss, James N. ; Karma, Alain</creatorcontrib><description>Beat-to-beat alternation of the action potential duration (APD) in paced cardiac cells has been linked to the onset of lethal arrhythmias. Both experimental and theoretical studies have shown that alternans at the single cell level can be caused by unstable membrane voltage ( V m) dynamics linked to steep APD-restitution, or unstable intracellular calcium (Ca) cycling linked to high sensitivity of Ca release from the sarcoplasmic reticulum on sarcoplasmic reticulum Ca load. Identifying which of these two mechanisms is the primary cause of cellular alternans, however, has remained difficult since Ca and V m are bidirectionally coupled. Here, we use numerical simulations of a physiologically detailed ionic model to show that the origin of alternans can be inferred by measuring the length scales over which APD and Ca i alternans reverse phase during spatially discordant alternans. The main conclusion is that these scales are comparable to a few millimeters and equal when alternans is driven by APD restitution, but differ markedly when alternans is driven predominantly by unstable Ca cycling. In the latter case, APD alternans still reverses phase on a millimeter tissue scale due to electrotonic coupling, while Ca alternans reverses phase on a submillimeter cellular scale. These results show that experimentally accessible measurements of Ca i and V m in cardiac tissue can be used to shed light on the cellular origin of alternans.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.106.100982</identifier><identifier>PMID: 17172300</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials ; Animals ; Biophysical Letters ; Biophysics ; Calcium ; Calcium - physiology ; Calcium Signaling - physiology ; Cardiac arrhythmia ; Cells ; Heart ; Heart Conduction System ; Models, Cardiovascular ; Myocytes, Cardiac - physiology ; Sarcoplasmic Reticulum - physiology ; Simulation</subject><ispartof>Biophysical journal, 2007-02, Vol.92 (4), p.L33-L35</ispartof><rights>2007 The Biophysical Society</rights><rights>Copyright Biophysical Society Feb 15, 2007</rights><rights>Copyright © 2007, Biophysical Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-332890af1054e75b5d976de8a95f5f87c3e856f4ae6987bdcf835055c1e133c63</citedby><cites>FETCH-LOGICAL-c515t-332890af1054e75b5d976de8a95f5f87c3e856f4ae6987bdcf835055c1e133c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1783870/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.106.100982$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17172300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sato, Daisuke</creatorcontrib><creatorcontrib>Shiferaw, Yohannes</creatorcontrib><creatorcontrib>Qu, Zhilin</creatorcontrib><creatorcontrib>Garfinkel, Alan</creatorcontrib><creatorcontrib>Weiss, James N.</creatorcontrib><creatorcontrib>Karma, Alain</creatorcontrib><title>Inferring the Cellular Origin of Voltage and Calcium Alternans from the Spatial Scales of Phase Reversal during Discordant Alternans</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Beat-to-beat alternation of the action potential duration (APD) in paced cardiac cells has been linked to the onset of lethal arrhythmias. Both experimental and theoretical studies have shown that alternans at the single cell level can be caused by unstable membrane voltage ( V m) dynamics linked to steep APD-restitution, or unstable intracellular calcium (Ca) cycling linked to high sensitivity of Ca release from the sarcoplasmic reticulum on sarcoplasmic reticulum Ca load. Identifying which of these two mechanisms is the primary cause of cellular alternans, however, has remained difficult since Ca and V m are bidirectionally coupled. Here, we use numerical simulations of a physiologically detailed ionic model to show that the origin of alternans can be inferred by measuring the length scales over which APD and Ca i alternans reverse phase during spatially discordant alternans. The main conclusion is that these scales are comparable to a few millimeters and equal when alternans is driven by APD restitution, but differ markedly when alternans is driven predominantly by unstable Ca cycling. In the latter case, APD alternans still reverses phase on a millimeter tissue scale due to electrotonic coupling, while Ca alternans reverses phase on a submillimeter cellular scale. These results show that experimentally accessible measurements of Ca i and V m in cardiac tissue can be used to shed light on the cellular origin of alternans.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Biophysical Letters</subject><subject>Biophysics</subject><subject>Calcium</subject><subject>Calcium - physiology</subject><subject>Calcium Signaling - physiology</subject><subject>Cardiac arrhythmia</subject><subject>Cells</subject><subject>Heart</subject><subject>Heart Conduction System</subject><subject>Models, Cardiovascular</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Sarcoplasmic Reticulum - physiology</subject><subject>Simulation</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkk1vEzEQhlcIRNPCL0BCFgduW8br9cceQKpCgUqViihwtRzvbOLIsYO9G6l3fjhuEyhwgINlyfO873x4quoZhVPKm-7VwsXt6iavTymIcqBTzYNqRnnb1ABKPKxmACBq1nb8qDrOeQ1AGw70cXVEJZUNA5hV3y_CgCm5sCTjCskcvZ-8SeQquaULJA7ka_SjWSIxoSdz462bNuTMj5iCCZkMKW7ulNdbMzrjybU1HvOt8OPKZCSfcIcpl0A_3WV567KNqTdhvHd5Uj0ajM_49HCfVF_enX-ef6gvr95fzM8ua8spH2vGGtWBGSjwFiVf8L6TokdlOj7wQUnLUHExtAZFp-Sit4NiHDi3FCljVrCT6s3edzstNthbDGMyXm-T25h0o6Nx-s9IcCu9jDtNpWJKQjF4eTBI8duEedSb0k6ZmQkYp6yF6kTLOvZfsIFWqFbSAr74C1zHqQzFF4ZyCQooLxDbQzbFnBMOv0qmoG93Qf_chfIg9H4Xiur5793eaw6fX4DXewDLzHcOk87WYbDYu4R21H10_0zwAyD4yPU</recordid><startdate>20070215</startdate><enddate>20070215</enddate><creator>Sato, Daisuke</creator><creator>Shiferaw, Yohannes</creator><creator>Qu, Zhilin</creator><creator>Garfinkel, Alan</creator><creator>Weiss, James N.</creator><creator>Karma, Alain</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070215</creationdate><title>Inferring the Cellular Origin of Voltage and Calcium Alternans from the Spatial Scales of Phase Reversal during Discordant Alternans</title><author>Sato, Daisuke ; Shiferaw, Yohannes ; Qu, Zhilin ; Garfinkel, Alan ; Weiss, James N. ; Karma, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-332890af1054e75b5d976de8a95f5f87c3e856f4ae6987bdcf835055c1e133c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Biophysical Letters</topic><topic>Biophysics</topic><topic>Calcium</topic><topic>Calcium - physiology</topic><topic>Calcium Signaling - physiology</topic><topic>Cardiac arrhythmia</topic><topic>Cells</topic><topic>Heart</topic><topic>Heart Conduction System</topic><topic>Models, Cardiovascular</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Sarcoplasmic Reticulum - physiology</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, Daisuke</creatorcontrib><creatorcontrib>Shiferaw, Yohannes</creatorcontrib><creatorcontrib>Qu, Zhilin</creatorcontrib><creatorcontrib>Garfinkel, Alan</creatorcontrib><creatorcontrib>Weiss, James N.</creatorcontrib><creatorcontrib>Karma, Alain</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, Daisuke</au><au>Shiferaw, Yohannes</au><au>Qu, Zhilin</au><au>Garfinkel, Alan</au><au>Weiss, James N.</au><au>Karma, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring the Cellular Origin of Voltage and Calcium Alternans from the Spatial Scales of Phase Reversal during Discordant Alternans</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2007-02-15</date><risdate>2007</risdate><volume>92</volume><issue>4</issue><spage>L33</spage><epage>L35</epage><pages>L33-L35</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Beat-to-beat alternation of the action potential duration (APD) in paced cardiac cells has been linked to the onset of lethal arrhythmias. Both experimental and theoretical studies have shown that alternans at the single cell level can be caused by unstable membrane voltage ( V m) dynamics linked to steep APD-restitution, or unstable intracellular calcium (Ca) cycling linked to high sensitivity of Ca release from the sarcoplasmic reticulum on sarcoplasmic reticulum Ca load. Identifying which of these two mechanisms is the primary cause of cellular alternans, however, has remained difficult since Ca and V m are bidirectionally coupled. Here, we use numerical simulations of a physiologically detailed ionic model to show that the origin of alternans can be inferred by measuring the length scales over which APD and Ca i alternans reverse phase during spatially discordant alternans. The main conclusion is that these scales are comparable to a few millimeters and equal when alternans is driven by APD restitution, but differ markedly when alternans is driven predominantly by unstable Ca cycling. In the latter case, APD alternans still reverses phase on a millimeter tissue scale due to electrotonic coupling, while Ca alternans reverses phase on a submillimeter cellular scale. These results show that experimentally accessible measurements of Ca i and V m in cardiac tissue can be used to shed light on the cellular origin of alternans.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17172300</pmid><doi>10.1529/biophysj.106.100982</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2007-02, Vol.92 (4), p.L33-L35
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1783870
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier); PubMed Central
subjects Action Potentials
Animals
Biophysical Letters
Biophysics
Calcium
Calcium - physiology
Calcium Signaling - physiology
Cardiac arrhythmia
Cells
Heart
Heart Conduction System
Models, Cardiovascular
Myocytes, Cardiac - physiology
Sarcoplasmic Reticulum - physiology
Simulation
title Inferring the Cellular Origin of Voltage and Calcium Alternans from the Spatial Scales of Phase Reversal during Discordant Alternans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20the%20Cellular%20Origin%20of%20Voltage%20and%20Calcium%20Alternans%20from%20the%20Spatial%20Scales%20of%20Phase%20Reversal%20during%20Discordant%20Alternans&rft.jtitle=Biophysical%20journal&rft.au=Sato,%20Daisuke&rft.date=2007-02-15&rft.volume=92&rft.issue=4&rft.spage=L33&rft.epage=L35&rft.pages=L33-L35&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.106.100982&rft_dat=%3Cproquest_pubme%3E68964393%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215708015&rft_id=info:pmid/17172300&rft_els_id=S0006349507709207&rfr_iscdi=true