Curvature and Hydrophobic Forces Drive Oligomerization and Modulate Activity of Rhodopsin in Membranes

G protein-coupled receptors (GPCRs) are essential components of cellular signaling pathways. They are the targets of many current pharmaceuticals and are postulated to dimerize or oligomerize in cellular membranes in conjunction with their functional mechanisms. We demonstrate using fluorescence res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2006-12, Vol.91 (12), p.4464-4477
Hauptverfasser: Botelho, Ana Vitória, Huber, Thomas, Sakmar, Thomas P., Brown, Michael F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4477
container_issue 12
container_start_page 4464
container_title Biophysical journal
container_volume 91
creator Botelho, Ana Vitória
Huber, Thomas
Sakmar, Thomas P.
Brown, Michael F.
description G protein-coupled receptors (GPCRs) are essential components of cellular signaling pathways. They are the targets of many current pharmaceuticals and are postulated to dimerize or oligomerize in cellular membranes in conjunction with their functional mechanisms. We demonstrate using fluorescence resonance energy transfer how association of rhodopsin occurs by long-range lipid-protein interactions due to geometrical forces, yielding greater receptor crowding. Constitutive association of rhodopsin is promoted by a reduction in membrane thickness (hydrophobic mismatch), but also by an increase in protein/lipid molar ratio, showing the importance of interactions extending well beyond a single annulus of boundary lipids. The fluorescence data correlate with the p K a for the MI-to-MII transition of rhodopsin, where deprotonation of the retinylidene Schiff base occurs in conjunction with helical movements leading to activation of the photoreceptor. A more dispersed membrane environment optimizes formation of the MII conformation that results in visual function. A flexible surface model explains both the dispersal and activation of rhodopsin in terms of bilayer curvature deformation (strain) and hydrophobic solvation energy. The bilayer stress is related to the lateral pressure profile in terms of the spontaneous curvature and associated bending rigidity. Transduction of the strain energy (frustration) of the bilayer drives protein oligomerization and conformational changes in a coupled manner. Our findings illuminate the physical principles of membrane protein association due to chemically nonspecific interactions in fluid lipid bilayers. Moreover, they yield a conceptual framework for understanding how the tightly regulated lipid compositions of cellular membranes influence their protein-mediated functions.
doi_str_mv 10.1529/biophysj.106.082776
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1779922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349506721580</els_id><sourcerecordid>1222896091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-aee4d9555816f4e0b7eb9316e76ab29358a899f6ea0fbd347355af5bee8b39533</originalsourceid><addsrcrecordid>eNqFkUuLFDEUhYMoTjv6CwQpXLirNo_Ka6EwtI4jzDAgug5J6tZ0mqpKm1QVtL_eaLfPhUIgr--e5NyD0FOC14RT_dKFuN8e8m5NsFhjRaUU99CK8IbWGCtxH60wxqJmjeZn6FHOO4wJ5Zg8RGdEliWjaoW6zZwWO80JKju21dWhTUU1uuCry5g85OpNCgtUt324iwOk8MVOIY7f4ZvYzr2doLrwU1jCdKhiV33YxjbucxirMm5gcMmOkB-jB53tMzw5zefo0-Xbj5ur-vr23fvNxXXtuSJTbQGaVnNeNqJrADsJTjMiQArrqGZcWaV1J8DizrWskYxz23EHoBzTnLFz9Pqou5_dAK2HcUq2N_sUBpsOJtpg_rwZw9bcxcUQKbWmtAi8OAmk-HmGPJkhZA99X1zEORuhiGq4Zv8FKZbFBpMFfP4XuItzGksXDCVcEkmJLhA7Qj7FnBN0P79MsPmWtvmRdjkQ5ph2qXr2u9tfNad4C_DqCEDp-RIgmewDjB7akMBPpo3hnw98Bdfrv20</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215717219</pqid></control><display><type>article</type><title>Curvature and Hydrophobic Forces Drive Oligomerization and Modulate Activity of Rhodopsin in Membranes</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Botelho, Ana Vitória ; Huber, Thomas ; Sakmar, Thomas P. ; Brown, Michael F.</creator><creatorcontrib>Botelho, Ana Vitória ; Huber, Thomas ; Sakmar, Thomas P. ; Brown, Michael F.</creatorcontrib><description>G protein-coupled receptors (GPCRs) are essential components of cellular signaling pathways. They are the targets of many current pharmaceuticals and are postulated to dimerize or oligomerize in cellular membranes in conjunction with their functional mechanisms. We demonstrate using fluorescence resonance energy transfer how association of rhodopsin occurs by long-range lipid-protein interactions due to geometrical forces, yielding greater receptor crowding. Constitutive association of rhodopsin is promoted by a reduction in membrane thickness (hydrophobic mismatch), but also by an increase in protein/lipid molar ratio, showing the importance of interactions extending well beyond a single annulus of boundary lipids. The fluorescence data correlate with the p K a for the MI-to-MII transition of rhodopsin, where deprotonation of the retinylidene Schiff base occurs in conjunction with helical movements leading to activation of the photoreceptor. A more dispersed membrane environment optimizes formation of the MII conformation that results in visual function. A flexible surface model explains both the dispersal and activation of rhodopsin in terms of bilayer curvature deformation (strain) and hydrophobic solvation energy. The bilayer stress is related to the lateral pressure profile in terms of the spontaneous curvature and associated bending rigidity. Transduction of the strain energy (frustration) of the bilayer drives protein oligomerization and conformational changes in a coupled manner. Our findings illuminate the physical principles of membrane protein association due to chemically nonspecific interactions in fluid lipid bilayers. Moreover, they yield a conceptual framework for understanding how the tightly regulated lipid compositions of cellular membranes influence their protein-mediated functions.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.106.082776</identifier><identifier>PMID: 17012328</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cattle ; Cells ; Fluorescence Resonance Energy Transfer ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers - chemistry ; Lipids ; Membranes ; Models, Biological ; Molecules ; Phospholipids - chemistry ; Pigments ; Protein Binding ; Proteins ; Rhodopsin - chemistry</subject><ispartof>Biophysical journal, 2006-12, Vol.91 (12), p.4464-4477</ispartof><rights>2006 The Biophysical Society</rights><rights>Copyright Biophysical Society Dec 15, 2006</rights><rights>Copyright © 2006, Biophysical Society 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-aee4d9555816f4e0b7eb9316e76ab29358a899f6ea0fbd347355af5bee8b39533</citedby><cites>FETCH-LOGICAL-c581t-aee4d9555816f4e0b7eb9316e76ab29358a899f6ea0fbd347355af5bee8b39533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779922/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349506721580$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17012328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Botelho, Ana Vitória</creatorcontrib><creatorcontrib>Huber, Thomas</creatorcontrib><creatorcontrib>Sakmar, Thomas P.</creatorcontrib><creatorcontrib>Brown, Michael F.</creatorcontrib><title>Curvature and Hydrophobic Forces Drive Oligomerization and Modulate Activity of Rhodopsin in Membranes</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>G protein-coupled receptors (GPCRs) are essential components of cellular signaling pathways. They are the targets of many current pharmaceuticals and are postulated to dimerize or oligomerize in cellular membranes in conjunction with their functional mechanisms. We demonstrate using fluorescence resonance energy transfer how association of rhodopsin occurs by long-range lipid-protein interactions due to geometrical forces, yielding greater receptor crowding. Constitutive association of rhodopsin is promoted by a reduction in membrane thickness (hydrophobic mismatch), but also by an increase in protein/lipid molar ratio, showing the importance of interactions extending well beyond a single annulus of boundary lipids. The fluorescence data correlate with the p K a for the MI-to-MII transition of rhodopsin, where deprotonation of the retinylidene Schiff base occurs in conjunction with helical movements leading to activation of the photoreceptor. A more dispersed membrane environment optimizes formation of the MII conformation that results in visual function. A flexible surface model explains both the dispersal and activation of rhodopsin in terms of bilayer curvature deformation (strain) and hydrophobic solvation energy. The bilayer stress is related to the lateral pressure profile in terms of the spontaneous curvature and associated bending rigidity. Transduction of the strain energy (frustration) of the bilayer drives protein oligomerization and conformational changes in a coupled manner. Our findings illuminate the physical principles of membrane protein association due to chemically nonspecific interactions in fluid lipid bilayers. Moreover, they yield a conceptual framework for understanding how the tightly regulated lipid compositions of cellular membranes influence their protein-mediated functions.</description><subject>Animals</subject><subject>Cattle</subject><subject>Cells</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Models, Biological</subject><subject>Molecules</subject><subject>Phospholipids - chemistry</subject><subject>Pigments</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Rhodopsin - chemistry</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUuLFDEUhYMoTjv6CwQpXLirNo_Ka6EwtI4jzDAgug5J6tZ0mqpKm1QVtL_eaLfPhUIgr--e5NyD0FOC14RT_dKFuN8e8m5NsFhjRaUU99CK8IbWGCtxH60wxqJmjeZn6FHOO4wJ5Zg8RGdEliWjaoW6zZwWO80JKju21dWhTUU1uuCry5g85OpNCgtUt324iwOk8MVOIY7f4ZvYzr2doLrwU1jCdKhiV33YxjbucxirMm5gcMmOkB-jB53tMzw5zefo0-Xbj5ur-vr23fvNxXXtuSJTbQGaVnNeNqJrADsJTjMiQArrqGZcWaV1J8DizrWskYxz23EHoBzTnLFz9Pqou5_dAK2HcUq2N_sUBpsOJtpg_rwZw9bcxcUQKbWmtAi8OAmk-HmGPJkhZA99X1zEORuhiGq4Zv8FKZbFBpMFfP4XuItzGksXDCVcEkmJLhA7Qj7FnBN0P79MsPmWtvmRdjkQ5ph2qXr2u9tfNad4C_DqCEDp-RIgmewDjB7akMBPpo3hnw98Bdfrv20</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Botelho, Ana Vitória</creator><creator>Huber, Thomas</creator><creator>Sakmar, Thomas P.</creator><creator>Brown, Michael F.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061201</creationdate><title>Curvature and Hydrophobic Forces Drive Oligomerization and Modulate Activity of Rhodopsin in Membranes</title><author>Botelho, Ana Vitória ; Huber, Thomas ; Sakmar, Thomas P. ; Brown, Michael F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-aee4d9555816f4e0b7eb9316e76ab29358a899f6ea0fbd347355af5bee8b39533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Cattle</topic><topic>Cells</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Models, Biological</topic><topic>Molecules</topic><topic>Phospholipids - chemistry</topic><topic>Pigments</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Rhodopsin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botelho, Ana Vitória</creatorcontrib><creatorcontrib>Huber, Thomas</creatorcontrib><creatorcontrib>Sakmar, Thomas P.</creatorcontrib><creatorcontrib>Brown, Michael F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botelho, Ana Vitória</au><au>Huber, Thomas</au><au>Sakmar, Thomas P.</au><au>Brown, Michael F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curvature and Hydrophobic Forces Drive Oligomerization and Modulate Activity of Rhodopsin in Membranes</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>91</volume><issue>12</issue><spage>4464</spage><epage>4477</epage><pages>4464-4477</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>G protein-coupled receptors (GPCRs) are essential components of cellular signaling pathways. They are the targets of many current pharmaceuticals and are postulated to dimerize or oligomerize in cellular membranes in conjunction with their functional mechanisms. We demonstrate using fluorescence resonance energy transfer how association of rhodopsin occurs by long-range lipid-protein interactions due to geometrical forces, yielding greater receptor crowding. Constitutive association of rhodopsin is promoted by a reduction in membrane thickness (hydrophobic mismatch), but also by an increase in protein/lipid molar ratio, showing the importance of interactions extending well beyond a single annulus of boundary lipids. The fluorescence data correlate with the p K a for the MI-to-MII transition of rhodopsin, where deprotonation of the retinylidene Schiff base occurs in conjunction with helical movements leading to activation of the photoreceptor. A more dispersed membrane environment optimizes formation of the MII conformation that results in visual function. A flexible surface model explains both the dispersal and activation of rhodopsin in terms of bilayer curvature deformation (strain) and hydrophobic solvation energy. The bilayer stress is related to the lateral pressure profile in terms of the spontaneous curvature and associated bending rigidity. Transduction of the strain energy (frustration) of the bilayer drives protein oligomerization and conformational changes in a coupled manner. Our findings illuminate the physical principles of membrane protein association due to chemically nonspecific interactions in fluid lipid bilayers. Moreover, they yield a conceptual framework for understanding how the tightly regulated lipid compositions of cellular membranes influence their protein-mediated functions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17012328</pmid><doi>10.1529/biophysj.106.082776</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2006-12, Vol.91 (12), p.4464-4477
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1779922
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Cattle
Cells
Fluorescence Resonance Energy Transfer
Hydrophobic and Hydrophilic Interactions
Lipid Bilayers - chemistry
Lipids
Membranes
Models, Biological
Molecules
Phospholipids - chemistry
Pigments
Protein Binding
Proteins
Rhodopsin - chemistry
title Curvature and Hydrophobic Forces Drive Oligomerization and Modulate Activity of Rhodopsin in Membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curvature%20and%20Hydrophobic%20Forces%20Drive%20Oligomerization%20and%20Modulate%20Activity%20of%20Rhodopsin%20in%20Membranes&rft.jtitle=Biophysical%20journal&rft.au=Botelho,%20Ana%20Vit%C3%B3ria&rft.date=2006-12-01&rft.volume=91&rft.issue=12&rft.spage=4464&rft.epage=4477&rft.pages=4464-4477&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.106.082776&rft_dat=%3Cproquest_pubme%3E1222896091%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215717219&rft_id=info:pmid/17012328&rft_els_id=S0006349506721580&rfr_iscdi=true