Identification of a Multipotent Astrocytic Stem Cell in the Immature and Adult Mouse Brain
The mammalian brain contains a population of neural stem cells (NSC) that can both self-renew and generate progeny along the three lineage pathways of the central nervous system (CNS), but the in vivo identification and localization of NSC in the postnatal CNS has proved elusive. Recently, separate...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2000-12, Vol.97 (25), p.13883-13888 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13888 |
---|---|
container_issue | 25 |
container_start_page | 13883 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 97 |
creator | Laywell, E D Rakic, P Kukekov, V G Holland, E C Steindler, D A |
description | The mammalian brain contains a population of neural stem cells (NSC) that can both self-renew and generate progeny along the three lineage pathways of the central nervous system (CNS), but the in vivo identification and localization of NSC in the postnatal CNS has proved elusive. Recently, separate studies have implicated ciliated ependymal (CE) cells, and special subependymal zone (SEZ) astrocytes as candidates for NSC in the adult brain. In the present study, we have examined the potential of these two NSC candidates to form multipotent spherical clones-neurospheres-in vitro. We conclude that CE cells are unipotent and give rise only to cells within the glia cell lineage, although they are capable of forming spherical clones when cultured in isolation. In contrast, astrocyte monolayers from the cerebral cortex, cerebellum, spinal cord, and SEZ can form neurospheres that give rise both to neurons and glia. However, the ability to form neurospheres is restricted to astrocyte monolayers derived during the first 2 postnatal wk, except for SEZ astrocytes, which retain this capacity in the mature forebrain. We conclude that environmental factors, simulated by certain in vitro conditions, transiently confer NSC-like attributes on astrocytes during a critical period in CNS development. |
doi_str_mv | 10.1073/pnas.250471697 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_17670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2666464</jstor_id><sourcerecordid>2666464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-dc11f06c81286bcc433e623263518630e12d020cadfc7a62737828ae6557a49c3</originalsourceid><addsrcrecordid>eNqFkb1vFDEUxC1ERI5AS4XAFaLZ4_nbK9FcTnyclIgCaGgsx-sljnbXh-2NyH-PT3ccpIHqFfOb0TwNQs8ILAko9mY72bykArgislUP0IJASxrJW3iIFgBUNZpTfooe53wDAK3Q8AidkkoJxegCfdt0fiqhD86WECcce2zx5TyUsI2lKniVS4rurgSHPxc_4rUfBhwmXK493oyjLXPy2E4dXnXVhS_jnD0-TzZMT9BJb4fsnx7uGfr6_t2X9cfm4tOHzXp10Tgh2tJ0jpAepNOEannlHGfMS8qoZIJoycAT2gEFZ7veKSupYkpTbb0UQlneOnaG3u5zt_PV6DtXWyc7mG0Ko013Jtpg7itTuDbf460hSiqo9lcHe4o_Zp-LGUN29Us7-fqMUZQLRSn7L0hqmATFK7jcgy7FnJPvj10ImN1qZreaOa5WDS_-_uAPfpipAi8PwM74W25VzTCEab0r9_rfhOnnYSj-Z6no8z16k0tMR5ZKKbnk7Bd1DLUv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17036074</pqid></control><display><type>article</type><title>Identification of a Multipotent Astrocytic Stem Cell in the Immature and Adult Mouse Brain</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Laywell, E D ; Rakic, P ; Kukekov, V G ; Holland, E C ; Steindler, D A</creator><creatorcontrib>Laywell, E D ; Rakic, P ; Kukekov, V G ; Holland, E C ; Steindler, D A</creatorcontrib><description>The mammalian brain contains a population of neural stem cells (NSC) that can both self-renew and generate progeny along the three lineage pathways of the central nervous system (CNS), but the in vivo identification and localization of NSC in the postnatal CNS has proved elusive. Recently, separate studies have implicated ciliated ependymal (CE) cells, and special subependymal zone (SEZ) astrocytes as candidates for NSC in the adult brain. In the present study, we have examined the potential of these two NSC candidates to form multipotent spherical clones-neurospheres-in vitro. We conclude that CE cells are unipotent and give rise only to cells within the glia cell lineage, although they are capable of forming spherical clones when cultured in isolation. In contrast, astrocyte monolayers from the cerebral cortex, cerebellum, spinal cord, and SEZ can form neurospheres that give rise both to neurons and glia. However, the ability to form neurospheres is restricted to astrocyte monolayers derived during the first 2 postnatal wk, except for SEZ astrocytes, which retain this capacity in the mature forebrain. We conclude that environmental factors, simulated by certain in vitro conditions, transiently confer NSC-like attributes on astrocytes during a critical period in CNS development.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.250471697</identifier><identifier>PMID: 11095732</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Animals ; Astrocytes ; Astrocytes - cytology ; Astrocytes - metabolism ; Astrocytes - ultrastructure ; B lymphocytes ; Biological Sciences ; Brain - cytology ; Brain - metabolism ; Brain - ultrastructure ; Cell Lineage ; Cellular immunity ; Cerebellum ; Cultured cells ; Glial Fibrillary Acidic Protein - metabolism ; Immunohistochemistry ; Mice ; Microscopy, Electron ; Multipotent stem cells ; Neural stem cells ; Neuroglia ; Neurons ; Spinal cord ; Stem Cells - cytology ; Stem Cells - metabolism ; Stem Cells - ultrastructure</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-12, Vol.97 (25), p.13883-13888</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright © 2000, The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-dc11f06c81286bcc433e623263518630e12d020cadfc7a62737828ae6557a49c3</citedby><cites>FETCH-LOGICAL-c559t-dc11f06c81286bcc433e623263518630e12d020cadfc7a62737828ae6557a49c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/25.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2666464$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2666464$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11095732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laywell, E D</creatorcontrib><creatorcontrib>Rakic, P</creatorcontrib><creatorcontrib>Kukekov, V G</creatorcontrib><creatorcontrib>Holland, E C</creatorcontrib><creatorcontrib>Steindler, D A</creatorcontrib><title>Identification of a Multipotent Astrocytic Stem Cell in the Immature and Adult Mouse Brain</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The mammalian brain contains a population of neural stem cells (NSC) that can both self-renew and generate progeny along the three lineage pathways of the central nervous system (CNS), but the in vivo identification and localization of NSC in the postnatal CNS has proved elusive. Recently, separate studies have implicated ciliated ependymal (CE) cells, and special subependymal zone (SEZ) astrocytes as candidates for NSC in the adult brain. In the present study, we have examined the potential of these two NSC candidates to form multipotent spherical clones-neurospheres-in vitro. We conclude that CE cells are unipotent and give rise only to cells within the glia cell lineage, although they are capable of forming spherical clones when cultured in isolation. In contrast, astrocyte monolayers from the cerebral cortex, cerebellum, spinal cord, and SEZ can form neurospheres that give rise both to neurons and glia. However, the ability to form neurospheres is restricted to astrocyte monolayers derived during the first 2 postnatal wk, except for SEZ astrocytes, which retain this capacity in the mature forebrain. We conclude that environmental factors, simulated by certain in vitro conditions, transiently confer NSC-like attributes on astrocytes during a critical period in CNS development.</description><subject>Animals</subject><subject>Astrocytes</subject><subject>Astrocytes - cytology</subject><subject>Astrocytes - metabolism</subject><subject>Astrocytes - ultrastructure</subject><subject>B lymphocytes</subject><subject>Biological Sciences</subject><subject>Brain - cytology</subject><subject>Brain - metabolism</subject><subject>Brain - ultrastructure</subject><subject>Cell Lineage</subject><subject>Cellular immunity</subject><subject>Cerebellum</subject><subject>Cultured cells</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>Immunohistochemistry</subject><subject>Mice</subject><subject>Microscopy, Electron</subject><subject>Multipotent stem cells</subject><subject>Neural stem cells</subject><subject>Neuroglia</subject><subject>Neurons</subject><subject>Spinal cord</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Stem Cells - ultrastructure</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1vFDEUxC1ERI5AS4XAFaLZ4_nbK9FcTnyclIgCaGgsx-sljnbXh-2NyH-PT3ccpIHqFfOb0TwNQs8ILAko9mY72bykArgislUP0IJASxrJW3iIFgBUNZpTfooe53wDAK3Q8AidkkoJxegCfdt0fiqhD86WECcce2zx5TyUsI2lKniVS4rurgSHPxc_4rUfBhwmXK493oyjLXPy2E4dXnXVhS_jnD0-TzZMT9BJb4fsnx7uGfr6_t2X9cfm4tOHzXp10Tgh2tJ0jpAepNOEannlHGfMS8qoZIJoycAT2gEFZ7veKSupYkpTbb0UQlneOnaG3u5zt_PV6DtXWyc7mG0Ko013Jtpg7itTuDbf460hSiqo9lcHe4o_Zp-LGUN29Us7-fqMUZQLRSn7L0hqmATFK7jcgy7FnJPvj10ImN1qZreaOa5WDS_-_uAPfpipAi8PwM74W25VzTCEab0r9_rfhOnnYSj-Z6no8z16k0tMR5ZKKbnk7Bd1DLUv</recordid><startdate>20001205</startdate><enddate>20001205</enddate><creator>Laywell, E D</creator><creator>Rakic, P</creator><creator>Kukekov, V G</creator><creator>Holland, E C</creator><creator>Steindler, D A</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20001205</creationdate><title>Identification of a Multipotent Astrocytic Stem Cell in the Immature and Adult Mouse Brain</title><author>Laywell, E D ; Rakic, P ; Kukekov, V G ; Holland, E C ; Steindler, D A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-dc11f06c81286bcc433e623263518630e12d020cadfc7a62737828ae6557a49c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Astrocytes</topic><topic>Astrocytes - cytology</topic><topic>Astrocytes - metabolism</topic><topic>Astrocytes - ultrastructure</topic><topic>B lymphocytes</topic><topic>Biological Sciences</topic><topic>Brain - cytology</topic><topic>Brain - metabolism</topic><topic>Brain - ultrastructure</topic><topic>Cell Lineage</topic><topic>Cellular immunity</topic><topic>Cerebellum</topic><topic>Cultured cells</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>Immunohistochemistry</topic><topic>Mice</topic><topic>Microscopy, Electron</topic><topic>Multipotent stem cells</topic><topic>Neural stem cells</topic><topic>Neuroglia</topic><topic>Neurons</topic><topic>Spinal cord</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Stem Cells - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laywell, E D</creatorcontrib><creatorcontrib>Rakic, P</creatorcontrib><creatorcontrib>Kukekov, V G</creatorcontrib><creatorcontrib>Holland, E C</creatorcontrib><creatorcontrib>Steindler, D A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laywell, E D</au><au>Rakic, P</au><au>Kukekov, V G</au><au>Holland, E C</au><au>Steindler, D A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a Multipotent Astrocytic Stem Cell in the Immature and Adult Mouse Brain</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-12-05</date><risdate>2000</risdate><volume>97</volume><issue>25</issue><spage>13883</spage><epage>13888</epage><pages>13883-13888</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The mammalian brain contains a population of neural stem cells (NSC) that can both self-renew and generate progeny along the three lineage pathways of the central nervous system (CNS), but the in vivo identification and localization of NSC in the postnatal CNS has proved elusive. Recently, separate studies have implicated ciliated ependymal (CE) cells, and special subependymal zone (SEZ) astrocytes as candidates for NSC in the adult brain. In the present study, we have examined the potential of these two NSC candidates to form multipotent spherical clones-neurospheres-in vitro. We conclude that CE cells are unipotent and give rise only to cells within the glia cell lineage, although they are capable of forming spherical clones when cultured in isolation. In contrast, astrocyte monolayers from the cerebral cortex, cerebellum, spinal cord, and SEZ can form neurospheres that give rise both to neurons and glia. However, the ability to form neurospheres is restricted to astrocyte monolayers derived during the first 2 postnatal wk, except for SEZ astrocytes, which retain this capacity in the mature forebrain. We conclude that environmental factors, simulated by certain in vitro conditions, transiently confer NSC-like attributes on astrocytes during a critical period in CNS development.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>11095732</pmid><doi>10.1073/pnas.250471697</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2000-12, Vol.97 (25), p.13883-13888 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_17670 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Astrocytes Astrocytes - cytology Astrocytes - metabolism Astrocytes - ultrastructure B lymphocytes Biological Sciences Brain - cytology Brain - metabolism Brain - ultrastructure Cell Lineage Cellular immunity Cerebellum Cultured cells Glial Fibrillary Acidic Protein - metabolism Immunohistochemistry Mice Microscopy, Electron Multipotent stem cells Neural stem cells Neuroglia Neurons Spinal cord Stem Cells - cytology Stem Cells - metabolism Stem Cells - ultrastructure |
title | Identification of a Multipotent Astrocytic Stem Cell in the Immature and Adult Mouse Brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20Multipotent%20Astrocytic%20Stem%20Cell%20in%20the%20Immature%20and%20Adult%20Mouse%20Brain&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Laywell,%20E%20D&rft.date=2000-12-05&rft.volume=97&rft.issue=25&rft.spage=13883&rft.epage=13888&rft.pages=13883-13888&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.250471697&rft_dat=%3Cjstor_pubme%3E2666464%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17036074&rft_id=info:pmid/11095732&rft_jstor_id=2666464&rfr_iscdi=true |