Identification of a Multipotent Astrocytic Stem Cell in the Immature and Adult Mouse Brain

The mammalian brain contains a population of neural stem cells (NSC) that can both self-renew and generate progeny along the three lineage pathways of the central nervous system (CNS), but the in vivo identification and localization of NSC in the postnatal CNS has proved elusive. Recently, separate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2000-12, Vol.97 (25), p.13883-13888
Hauptverfasser: Laywell, E D, Rakic, P, Kukekov, V G, Holland, E C, Steindler, D A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13888
container_issue 25
container_start_page 13883
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 97
creator Laywell, E D
Rakic, P
Kukekov, V G
Holland, E C
Steindler, D A
description The mammalian brain contains a population of neural stem cells (NSC) that can both self-renew and generate progeny along the three lineage pathways of the central nervous system (CNS), but the in vivo identification and localization of NSC in the postnatal CNS has proved elusive. Recently, separate studies have implicated ciliated ependymal (CE) cells, and special subependymal zone (SEZ) astrocytes as candidates for NSC in the adult brain. In the present study, we have examined the potential of these two NSC candidates to form multipotent spherical clones-neurospheres-in vitro. We conclude that CE cells are unipotent and give rise only to cells within the glia cell lineage, although they are capable of forming spherical clones when cultured in isolation. In contrast, astrocyte monolayers from the cerebral cortex, cerebellum, spinal cord, and SEZ can form neurospheres that give rise both to neurons and glia. However, the ability to form neurospheres is restricted to astrocyte monolayers derived during the first 2 postnatal wk, except for SEZ astrocytes, which retain this capacity in the mature forebrain. We conclude that environmental factors, simulated by certain in vitro conditions, transiently confer NSC-like attributes on astrocytes during a critical period in CNS development.
doi_str_mv 10.1073/pnas.250471697
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_17670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2666464</jstor_id><sourcerecordid>2666464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-dc11f06c81286bcc433e623263518630e12d020cadfc7a62737828ae6557a49c3</originalsourceid><addsrcrecordid>eNqFkb1vFDEUxC1ERI5AS4XAFaLZ4_nbK9FcTnyclIgCaGgsx-sljnbXh-2NyH-PT3ccpIHqFfOb0TwNQs8ILAko9mY72bykArgislUP0IJASxrJW3iIFgBUNZpTfooe53wDAK3Q8AidkkoJxegCfdt0fiqhD86WECcce2zx5TyUsI2lKniVS4rurgSHPxc_4rUfBhwmXK493oyjLXPy2E4dXnXVhS_jnD0-TzZMT9BJb4fsnx7uGfr6_t2X9cfm4tOHzXp10Tgh2tJ0jpAepNOEannlHGfMS8qoZIJoycAT2gEFZ7veKSupYkpTbb0UQlneOnaG3u5zt_PV6DtXWyc7mG0Ko013Jtpg7itTuDbf460hSiqo9lcHe4o_Zp-LGUN29Us7-fqMUZQLRSn7L0hqmATFK7jcgy7FnJPvj10ImN1qZreaOa5WDS_-_uAPfpipAi8PwM74W25VzTCEab0r9_rfhOnnYSj-Z6no8z16k0tMR5ZKKbnk7Bd1DLUv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17036074</pqid></control><display><type>article</type><title>Identification of a Multipotent Astrocytic Stem Cell in the Immature and Adult Mouse Brain</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Laywell, E D ; Rakic, P ; Kukekov, V G ; Holland, E C ; Steindler, D A</creator><creatorcontrib>Laywell, E D ; Rakic, P ; Kukekov, V G ; Holland, E C ; Steindler, D A</creatorcontrib><description>The mammalian brain contains a population of neural stem cells (NSC) that can both self-renew and generate progeny along the three lineage pathways of the central nervous system (CNS), but the in vivo identification and localization of NSC in the postnatal CNS has proved elusive. Recently, separate studies have implicated ciliated ependymal (CE) cells, and special subependymal zone (SEZ) astrocytes as candidates for NSC in the adult brain. In the present study, we have examined the potential of these two NSC candidates to form multipotent spherical clones-neurospheres-in vitro. We conclude that CE cells are unipotent and give rise only to cells within the glia cell lineage, although they are capable of forming spherical clones when cultured in isolation. In contrast, astrocyte monolayers from the cerebral cortex, cerebellum, spinal cord, and SEZ can form neurospheres that give rise both to neurons and glia. However, the ability to form neurospheres is restricted to astrocyte monolayers derived during the first 2 postnatal wk, except for SEZ astrocytes, which retain this capacity in the mature forebrain. We conclude that environmental factors, simulated by certain in vitro conditions, transiently confer NSC-like attributes on astrocytes during a critical period in CNS development.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.250471697</identifier><identifier>PMID: 11095732</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Animals ; Astrocytes ; Astrocytes - cytology ; Astrocytes - metabolism ; Astrocytes - ultrastructure ; B lymphocytes ; Biological Sciences ; Brain - cytology ; Brain - metabolism ; Brain - ultrastructure ; Cell Lineage ; Cellular immunity ; Cerebellum ; Cultured cells ; Glial Fibrillary Acidic Protein - metabolism ; Immunohistochemistry ; Mice ; Microscopy, Electron ; Multipotent stem cells ; Neural stem cells ; Neuroglia ; Neurons ; Spinal cord ; Stem Cells - cytology ; Stem Cells - metabolism ; Stem Cells - ultrastructure</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-12, Vol.97 (25), p.13883-13888</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright © 2000, The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-dc11f06c81286bcc433e623263518630e12d020cadfc7a62737828ae6557a49c3</citedby><cites>FETCH-LOGICAL-c559t-dc11f06c81286bcc433e623263518630e12d020cadfc7a62737828ae6557a49c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/25.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2666464$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2666464$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11095732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laywell, E D</creatorcontrib><creatorcontrib>Rakic, P</creatorcontrib><creatorcontrib>Kukekov, V G</creatorcontrib><creatorcontrib>Holland, E C</creatorcontrib><creatorcontrib>Steindler, D A</creatorcontrib><title>Identification of a Multipotent Astrocytic Stem Cell in the Immature and Adult Mouse Brain</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The mammalian brain contains a population of neural stem cells (NSC) that can both self-renew and generate progeny along the three lineage pathways of the central nervous system (CNS), but the in vivo identification and localization of NSC in the postnatal CNS has proved elusive. Recently, separate studies have implicated ciliated ependymal (CE) cells, and special subependymal zone (SEZ) astrocytes as candidates for NSC in the adult brain. In the present study, we have examined the potential of these two NSC candidates to form multipotent spherical clones-neurospheres-in vitro. We conclude that CE cells are unipotent and give rise only to cells within the glia cell lineage, although they are capable of forming spherical clones when cultured in isolation. In contrast, astrocyte monolayers from the cerebral cortex, cerebellum, spinal cord, and SEZ can form neurospheres that give rise both to neurons and glia. However, the ability to form neurospheres is restricted to astrocyte monolayers derived during the first 2 postnatal wk, except for SEZ astrocytes, which retain this capacity in the mature forebrain. We conclude that environmental factors, simulated by certain in vitro conditions, transiently confer NSC-like attributes on astrocytes during a critical period in CNS development.</description><subject>Animals</subject><subject>Astrocytes</subject><subject>Astrocytes - cytology</subject><subject>Astrocytes - metabolism</subject><subject>Astrocytes - ultrastructure</subject><subject>B lymphocytes</subject><subject>Biological Sciences</subject><subject>Brain - cytology</subject><subject>Brain - metabolism</subject><subject>Brain - ultrastructure</subject><subject>Cell Lineage</subject><subject>Cellular immunity</subject><subject>Cerebellum</subject><subject>Cultured cells</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>Immunohistochemistry</subject><subject>Mice</subject><subject>Microscopy, Electron</subject><subject>Multipotent stem cells</subject><subject>Neural stem cells</subject><subject>Neuroglia</subject><subject>Neurons</subject><subject>Spinal cord</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Stem Cells - ultrastructure</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1vFDEUxC1ERI5AS4XAFaLZ4_nbK9FcTnyclIgCaGgsx-sljnbXh-2NyH-PT3ccpIHqFfOb0TwNQs8ILAko9mY72bykArgislUP0IJASxrJW3iIFgBUNZpTfooe53wDAK3Q8AidkkoJxegCfdt0fiqhD86WECcce2zx5TyUsI2lKniVS4rurgSHPxc_4rUfBhwmXK493oyjLXPy2E4dXnXVhS_jnD0-TzZMT9BJb4fsnx7uGfr6_t2X9cfm4tOHzXp10Tgh2tJ0jpAepNOEannlHGfMS8qoZIJoycAT2gEFZ7veKSupYkpTbb0UQlneOnaG3u5zt_PV6DtXWyc7mG0Ko013Jtpg7itTuDbf460hSiqo9lcHe4o_Zp-LGUN29Us7-fqMUZQLRSn7L0hqmATFK7jcgy7FnJPvj10ImN1qZreaOa5WDS_-_uAPfpipAi8PwM74W25VzTCEab0r9_rfhOnnYSj-Z6no8z16k0tMR5ZKKbnk7Bd1DLUv</recordid><startdate>20001205</startdate><enddate>20001205</enddate><creator>Laywell, E D</creator><creator>Rakic, P</creator><creator>Kukekov, V G</creator><creator>Holland, E C</creator><creator>Steindler, D A</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20001205</creationdate><title>Identification of a Multipotent Astrocytic Stem Cell in the Immature and Adult Mouse Brain</title><author>Laywell, E D ; Rakic, P ; Kukekov, V G ; Holland, E C ; Steindler, D A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-dc11f06c81286bcc433e623263518630e12d020cadfc7a62737828ae6557a49c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Astrocytes</topic><topic>Astrocytes - cytology</topic><topic>Astrocytes - metabolism</topic><topic>Astrocytes - ultrastructure</topic><topic>B lymphocytes</topic><topic>Biological Sciences</topic><topic>Brain - cytology</topic><topic>Brain - metabolism</topic><topic>Brain - ultrastructure</topic><topic>Cell Lineage</topic><topic>Cellular immunity</topic><topic>Cerebellum</topic><topic>Cultured cells</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>Immunohistochemistry</topic><topic>Mice</topic><topic>Microscopy, Electron</topic><topic>Multipotent stem cells</topic><topic>Neural stem cells</topic><topic>Neuroglia</topic><topic>Neurons</topic><topic>Spinal cord</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Stem Cells - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laywell, E D</creatorcontrib><creatorcontrib>Rakic, P</creatorcontrib><creatorcontrib>Kukekov, V G</creatorcontrib><creatorcontrib>Holland, E C</creatorcontrib><creatorcontrib>Steindler, D A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laywell, E D</au><au>Rakic, P</au><au>Kukekov, V G</au><au>Holland, E C</au><au>Steindler, D A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a Multipotent Astrocytic Stem Cell in the Immature and Adult Mouse Brain</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-12-05</date><risdate>2000</risdate><volume>97</volume><issue>25</issue><spage>13883</spage><epage>13888</epage><pages>13883-13888</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The mammalian brain contains a population of neural stem cells (NSC) that can both self-renew and generate progeny along the three lineage pathways of the central nervous system (CNS), but the in vivo identification and localization of NSC in the postnatal CNS has proved elusive. Recently, separate studies have implicated ciliated ependymal (CE) cells, and special subependymal zone (SEZ) astrocytes as candidates for NSC in the adult brain. In the present study, we have examined the potential of these two NSC candidates to form multipotent spherical clones-neurospheres-in vitro. We conclude that CE cells are unipotent and give rise only to cells within the glia cell lineage, although they are capable of forming spherical clones when cultured in isolation. In contrast, astrocyte monolayers from the cerebral cortex, cerebellum, spinal cord, and SEZ can form neurospheres that give rise both to neurons and glia. However, the ability to form neurospheres is restricted to astrocyte monolayers derived during the first 2 postnatal wk, except for SEZ astrocytes, which retain this capacity in the mature forebrain. We conclude that environmental factors, simulated by certain in vitro conditions, transiently confer NSC-like attributes on astrocytes during a critical period in CNS development.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>11095732</pmid><doi>10.1073/pnas.250471697</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2000-12, Vol.97 (25), p.13883-13888
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_17670
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Astrocytes
Astrocytes - cytology
Astrocytes - metabolism
Astrocytes - ultrastructure
B lymphocytes
Biological Sciences
Brain - cytology
Brain - metabolism
Brain - ultrastructure
Cell Lineage
Cellular immunity
Cerebellum
Cultured cells
Glial Fibrillary Acidic Protein - metabolism
Immunohistochemistry
Mice
Microscopy, Electron
Multipotent stem cells
Neural stem cells
Neuroglia
Neurons
Spinal cord
Stem Cells - cytology
Stem Cells - metabolism
Stem Cells - ultrastructure
title Identification of a Multipotent Astrocytic Stem Cell in the Immature and Adult Mouse Brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20Multipotent%20Astrocytic%20Stem%20Cell%20in%20the%20Immature%20and%20Adult%20Mouse%20Brain&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Laywell,%20E%20D&rft.date=2000-12-05&rft.volume=97&rft.issue=25&rft.spage=13883&rft.epage=13888&rft.pages=13883-13888&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.250471697&rft_dat=%3Cjstor_pubme%3E2666464%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17036074&rft_id=info:pmid/11095732&rft_jstor_id=2666464&rfr_iscdi=true