Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy

We have used the combination of single-molecule Förster resonance energy transfer and kinetic synchrotron radiation circular dichroism experiments to probe the conformational ensemble of the collapsed unfolded state of the small cold shock protein CspTm under near-native conditions. This regime is p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-01, Vol.104 (1), p.105-110
Hauptverfasser: Hoffmann, Armin, Kane, Avinash, Nettels, Daniel, Hertzog, David E, Baumgärtel, Peter, Lengefeld, Jan, Reichardt, Gerd, Horsley, David A, Seckler, Robert, Bakajin, Olgica, Schuler, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue 1
container_start_page 105
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Hoffmann, Armin
Kane, Avinash
Nettels, Daniel
Hertzog, David E
Baumgärtel, Peter
Lengefeld, Jan
Reichardt, Gerd
Horsley, David A
Seckler, Robert
Bakajin, Olgica
Schuler, Benjamin
description We have used the combination of single-molecule Förster resonance energy transfer and kinetic synchrotron radiation circular dichroism experiments to probe the conformational ensemble of the collapsed unfolded state of the small cold shock protein CspTm under near-native conditions. This regime is physiologically most relevant but difficult to access experimentally, because the equilibrium signal in ensemble experiments is dominated by folded molecules. Here, we avoid this problem in two ways. One is the use of single-molecule Förster resonance energy transfer, which allows the separation of folded and unfolded subpopulations at equilibrium and provides information on long-range intramolecular distance distributions. From experiments with donor and acceptor chromophores placed at different positions within the chain, we find that the distance distributions in unfolded CspTm agree surprisingly well with a Gaussian chain not only at high concentrations of denaturant, where the polypeptide chain is expanded, but also at low denaturant concentrations, where the chain is collapsed. The second, complementary approach is synchrotron radiation circular dichroism spectroscopy of collapsed unfolded molecules transiently populated with a microfluidic device that enables rapid mixing. The results indicate a β-structure content of the collapsed unfolded state of [almost equal to]20% compared with the folded protein. This suggests that collapse can induce secondary structure in an unfolded state without interfering with long-range distance distributions characteristic of a random coil, which were previously found only for highly expanded unfolded proteins.
doi_str_mv 10.1073/pnas.0604353104
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1765419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25426058</jstor_id><sourcerecordid>25426058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-2fe4558d87f0335f3bab1fc521c0b7e37d0bd52c11fb525ef5adc9bf9c5a5e0a3</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxSMEokvhzAmwOHBLO_6KkwsSqviSijhAz5bj2LtesnawHWAl_ngc7apbOHCxLb3fPL-ZqaqnGC4wCHo5eZUuoAFGOcXA7lUrDB2uG9bB_WoFQETdMsLOqkcpbQGg4y08rM6wwC1nhKyq35_UNDm_RlMM2TiPdBhHNSWDfrq8QalIo6l3YTR6Hg2y4xyiSdp4bZDyA_rmvMlOo7T3elMsYvAoqsGp7MpLu1jKVESDW1SXdihNRhcq6TDtH1cPrBqTeXK8z6ubd2-_Xn2orz-__3j15rrWjIlcE2sY5-3QCguUckt71WOrOcEaemGoGKAfONEY254TbixXg-5622muuAFFz6vXB99p7ndmKOlzVKOcotupuJdBOfm34t1GrsMPiUXDGe6KwaujQQzfZ5Oy3LkyhDIpb8KcZNPSDtMGF_DlP-A2zNGX5iQBTLuuE6RAlwdIlzmkaOxtEgxyWatc1ipPay0Vz-82cOKPe7wTcKk82TGJy8mlnccxm1-5gM_-B570bcoh3gKk_NIAb4v-4qBbFaRaR5fkzZelNSi5BbSc_gHELM2r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201399972</pqid></control><display><type>article</type><title>Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hoffmann, Armin ; Kane, Avinash ; Nettels, Daniel ; Hertzog, David E ; Baumgärtel, Peter ; Lengefeld, Jan ; Reichardt, Gerd ; Horsley, David A ; Seckler, Robert ; Bakajin, Olgica ; Schuler, Benjamin</creator><creatorcontrib>Hoffmann, Armin ; Kane, Avinash ; Nettels, Daniel ; Hertzog, David E ; Baumgärtel, Peter ; Lengefeld, Jan ; Reichardt, Gerd ; Horsley, David A ; Seckler, Robert ; Bakajin, Olgica ; Schuler, Benjamin</creatorcontrib><description>We have used the combination of single-molecule Förster resonance energy transfer and kinetic synchrotron radiation circular dichroism experiments to probe the conformational ensemble of the collapsed unfolded state of the small cold shock protein CspTm under near-native conditions. This regime is physiologically most relevant but difficult to access experimentally, because the equilibrium signal in ensemble experiments is dominated by folded molecules. Here, we avoid this problem in two ways. One is the use of single-molecule Förster resonance energy transfer, which allows the separation of folded and unfolded subpopulations at equilibrium and provides information on long-range intramolecular distance distributions. From experiments with donor and acceptor chromophores placed at different positions within the chain, we find that the distance distributions in unfolded CspTm agree surprisingly well with a Gaussian chain not only at high concentrations of denaturant, where the polypeptide chain is expanded, but also at low denaturant concentrations, where the chain is collapsed. The second, complementary approach is synchrotron radiation circular dichroism spectroscopy of collapsed unfolded molecules transiently populated with a microfluidic device that enables rapid mixing. The results indicate a β-structure content of the collapsed unfolded state of [almost equal to]20% compared with the folded protein. This suggests that collapse can induce secondary structure in an unfolded state without interfering with long-range distance distributions characteristic of a random coil, which were previously found only for highly expanded unfolded proteins.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0604353104</identifier><identifier>PMID: 17185422</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biophysics ; Circular Dichroism - methods ; Data lines ; Dichroism ; Dyes ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Histograms ; Kinetics ; Line spectra ; Microfluidic Analytical Techniques ; Molecules ; Protein Folding ; Protein Structure, Secondary ; Proteins ; Spectroscopy ; Spectrum analysis ; Synchrotron radiation ; Synchrotrons</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-01, Vol.104 (1), p.105-110</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 2, 2007</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-2fe4558d87f0335f3bab1fc521c0b7e37d0bd52c11fb525ef5adc9bf9c5a5e0a3</citedby><cites>FETCH-LOGICAL-c447t-2fe4558d87f0335f3bab1fc521c0b7e37d0bd52c11fb525ef5adc9bf9c5a5e0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/1.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25426058$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25426058$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17185422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoffmann, Armin</creatorcontrib><creatorcontrib>Kane, Avinash</creatorcontrib><creatorcontrib>Nettels, Daniel</creatorcontrib><creatorcontrib>Hertzog, David E</creatorcontrib><creatorcontrib>Baumgärtel, Peter</creatorcontrib><creatorcontrib>Lengefeld, Jan</creatorcontrib><creatorcontrib>Reichardt, Gerd</creatorcontrib><creatorcontrib>Horsley, David A</creatorcontrib><creatorcontrib>Seckler, Robert</creatorcontrib><creatorcontrib>Bakajin, Olgica</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><title>Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We have used the combination of single-molecule Förster resonance energy transfer and kinetic synchrotron radiation circular dichroism experiments to probe the conformational ensemble of the collapsed unfolded state of the small cold shock protein CspTm under near-native conditions. This regime is physiologically most relevant but difficult to access experimentally, because the equilibrium signal in ensemble experiments is dominated by folded molecules. Here, we avoid this problem in two ways. One is the use of single-molecule Förster resonance energy transfer, which allows the separation of folded and unfolded subpopulations at equilibrium and provides information on long-range intramolecular distance distributions. From experiments with donor and acceptor chromophores placed at different positions within the chain, we find that the distance distributions in unfolded CspTm agree surprisingly well with a Gaussian chain not only at high concentrations of denaturant, where the polypeptide chain is expanded, but also at low denaturant concentrations, where the chain is collapsed. The second, complementary approach is synchrotron radiation circular dichroism spectroscopy of collapsed unfolded molecules transiently populated with a microfluidic device that enables rapid mixing. The results indicate a β-structure content of the collapsed unfolded state of [almost equal to]20% compared with the folded protein. This suggests that collapse can induce secondary structure in an unfolded state without interfering with long-range distance distributions characteristic of a random coil, which were previously found only for highly expanded unfolded proteins.</description><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>Circular Dichroism - methods</subject><subject>Data lines</subject><subject>Dichroism</subject><subject>Dyes</subject><subject>Fluorescence</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Histograms</subject><subject>Kinetics</subject><subject>Line spectra</subject><subject>Microfluidic Analytical Techniques</subject><subject>Molecules</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1v1DAQxSMEokvhzAmwOHBLO_6KkwsSqviSijhAz5bj2LtesnawHWAl_ngc7apbOHCxLb3fPL-ZqaqnGC4wCHo5eZUuoAFGOcXA7lUrDB2uG9bB_WoFQETdMsLOqkcpbQGg4y08rM6wwC1nhKyq35_UNDm_RlMM2TiPdBhHNSWDfrq8QalIo6l3YTR6Hg2y4xyiSdp4bZDyA_rmvMlOo7T3elMsYvAoqsGp7MpLu1jKVESDW1SXdihNRhcq6TDtH1cPrBqTeXK8z6ubd2-_Xn2orz-__3j15rrWjIlcE2sY5-3QCguUckt71WOrOcEaemGoGKAfONEY254TbixXg-5622muuAFFz6vXB99p7ndmKOlzVKOcotupuJdBOfm34t1GrsMPiUXDGe6KwaujQQzfZ5Oy3LkyhDIpb8KcZNPSDtMGF_DlP-A2zNGX5iQBTLuuE6RAlwdIlzmkaOxtEgxyWatc1ipPay0Vz-82cOKPe7wTcKk82TGJy8mlnccxm1-5gM_-B570bcoh3gKk_NIAb4v-4qBbFaRaR5fkzZelNSi5BbSc_gHELM2r</recordid><startdate>20070102</startdate><enddate>20070102</enddate><creator>Hoffmann, Armin</creator><creator>Kane, Avinash</creator><creator>Nettels, Daniel</creator><creator>Hertzog, David E</creator><creator>Baumgärtel, Peter</creator><creator>Lengefeld, Jan</creator><creator>Reichardt, Gerd</creator><creator>Horsley, David A</creator><creator>Seckler, Robert</creator><creator>Bakajin, Olgica</creator><creator>Schuler, Benjamin</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070102</creationdate><title>Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy</title><author>Hoffmann, Armin ; Kane, Avinash ; Nettels, Daniel ; Hertzog, David E ; Baumgärtel, Peter ; Lengefeld, Jan ; Reichardt, Gerd ; Horsley, David A ; Seckler, Robert ; Bakajin, Olgica ; Schuler, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-2fe4558d87f0335f3bab1fc521c0b7e37d0bd52c11fb525ef5adc9bf9c5a5e0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>Circular Dichroism - methods</topic><topic>Data lines</topic><topic>Dichroism</topic><topic>Dyes</topic><topic>Fluorescence</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Histograms</topic><topic>Kinetics</topic><topic>Line spectra</topic><topic>Microfluidic Analytical Techniques</topic><topic>Molecules</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffmann, Armin</creatorcontrib><creatorcontrib>Kane, Avinash</creatorcontrib><creatorcontrib>Nettels, Daniel</creatorcontrib><creatorcontrib>Hertzog, David E</creatorcontrib><creatorcontrib>Baumgärtel, Peter</creatorcontrib><creatorcontrib>Lengefeld, Jan</creatorcontrib><creatorcontrib>Reichardt, Gerd</creatorcontrib><creatorcontrib>Horsley, David A</creatorcontrib><creatorcontrib>Seckler, Robert</creatorcontrib><creatorcontrib>Bakajin, Olgica</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffmann, Armin</au><au>Kane, Avinash</au><au>Nettels, Daniel</au><au>Hertzog, David E</au><au>Baumgärtel, Peter</au><au>Lengefeld, Jan</au><au>Reichardt, Gerd</au><au>Horsley, David A</au><au>Seckler, Robert</au><au>Bakajin, Olgica</au><au>Schuler, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-01-02</date><risdate>2007</risdate><volume>104</volume><issue>1</issue><spage>105</spage><epage>110</epage><pages>105-110</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We have used the combination of single-molecule Förster resonance energy transfer and kinetic synchrotron radiation circular dichroism experiments to probe the conformational ensemble of the collapsed unfolded state of the small cold shock protein CspTm under near-native conditions. This regime is physiologically most relevant but difficult to access experimentally, because the equilibrium signal in ensemble experiments is dominated by folded molecules. Here, we avoid this problem in two ways. One is the use of single-molecule Förster resonance energy transfer, which allows the separation of folded and unfolded subpopulations at equilibrium and provides information on long-range intramolecular distance distributions. From experiments with donor and acceptor chromophores placed at different positions within the chain, we find that the distance distributions in unfolded CspTm agree surprisingly well with a Gaussian chain not only at high concentrations of denaturant, where the polypeptide chain is expanded, but also at low denaturant concentrations, where the chain is collapsed. The second, complementary approach is synchrotron radiation circular dichroism spectroscopy of collapsed unfolded molecules transiently populated with a microfluidic device that enables rapid mixing. The results indicate a β-structure content of the collapsed unfolded state of [almost equal to]20% compared with the folded protein. This suggests that collapse can induce secondary structure in an unfolded state without interfering with long-range distance distributions characteristic of a random coil, which were previously found only for highly expanded unfolded proteins.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17185422</pmid><doi>10.1073/pnas.0604353104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-01, Vol.104 (1), p.105-110
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1765419
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Biophysics
Circular Dichroism - methods
Data lines
Dichroism
Dyes
Fluorescence
Fluorescence Resonance Energy Transfer
Histograms
Kinetics
Line spectra
Microfluidic Analytical Techniques
Molecules
Protein Folding
Protein Structure, Secondary
Proteins
Spectroscopy
Spectrum analysis
Synchrotron radiation
Synchrotrons
title Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20protein%20collapse%20with%20single-molecule%20fluorescence%20and%20kinetic%20synchrotron%20radiation%20circular%20dichroism%20spectroscopy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hoffmann,%20Armin&rft.date=2007-01-02&rft.volume=104&rft.issue=1&rft.spage=105&rft.epage=110&rft.pages=105-110&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0604353104&rft_dat=%3Cjstor_pubme%3E25426058%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201399972&rft_id=info:pmid/17185422&rft_jstor_id=25426058&rfr_iscdi=true