Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy
We have used the combination of single-molecule Förster resonance energy transfer and kinetic synchrotron radiation circular dichroism experiments to probe the conformational ensemble of the collapsed unfolded state of the small cold shock protein CspTm under near-native conditions. This regime is p...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2007-01, Vol.104 (1), p.105-110 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | 1 |
container_start_page | 105 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 104 |
creator | Hoffmann, Armin Kane, Avinash Nettels, Daniel Hertzog, David E Baumgärtel, Peter Lengefeld, Jan Reichardt, Gerd Horsley, David A Seckler, Robert Bakajin, Olgica Schuler, Benjamin |
description | We have used the combination of single-molecule Förster resonance energy transfer and kinetic synchrotron radiation circular dichroism experiments to probe the conformational ensemble of the collapsed unfolded state of the small cold shock protein CspTm under near-native conditions. This regime is physiologically most relevant but difficult to access experimentally, because the equilibrium signal in ensemble experiments is dominated by folded molecules. Here, we avoid this problem in two ways. One is the use of single-molecule Förster resonance energy transfer, which allows the separation of folded and unfolded subpopulations at equilibrium and provides information on long-range intramolecular distance distributions. From experiments with donor and acceptor chromophores placed at different positions within the chain, we find that the distance distributions in unfolded CspTm agree surprisingly well with a Gaussian chain not only at high concentrations of denaturant, where the polypeptide chain is expanded, but also at low denaturant concentrations, where the chain is collapsed. The second, complementary approach is synchrotron radiation circular dichroism spectroscopy of collapsed unfolded molecules transiently populated with a microfluidic device that enables rapid mixing. The results indicate a β-structure content of the collapsed unfolded state of [almost equal to]20% compared with the folded protein. This suggests that collapse can induce secondary structure in an unfolded state without interfering with long-range distance distributions characteristic of a random coil, which were previously found only for highly expanded unfolded proteins. |
doi_str_mv | 10.1073/pnas.0604353104 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1765419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25426058</jstor_id><sourcerecordid>25426058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-2fe4558d87f0335f3bab1fc521c0b7e37d0bd52c11fb525ef5adc9bf9c5a5e0a3</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxSMEokvhzAmwOHBLO_6KkwsSqviSijhAz5bj2LtesnawHWAl_ngc7apbOHCxLb3fPL-ZqaqnGC4wCHo5eZUuoAFGOcXA7lUrDB2uG9bB_WoFQETdMsLOqkcpbQGg4y08rM6wwC1nhKyq35_UNDm_RlMM2TiPdBhHNSWDfrq8QalIo6l3YTR6Hg2y4xyiSdp4bZDyA_rmvMlOo7T3elMsYvAoqsGp7MpLu1jKVESDW1SXdihNRhcq6TDtH1cPrBqTeXK8z6ubd2-_Xn2orz-__3j15rrWjIlcE2sY5-3QCguUckt71WOrOcEaemGoGKAfONEY254TbixXg-5622muuAFFz6vXB99p7ndmKOlzVKOcotupuJdBOfm34t1GrsMPiUXDGe6KwaujQQzfZ5Oy3LkyhDIpb8KcZNPSDtMGF_DlP-A2zNGX5iQBTLuuE6RAlwdIlzmkaOxtEgxyWatc1ipPay0Vz-82cOKPe7wTcKk82TGJy8mlnccxm1-5gM_-B570bcoh3gKk_NIAb4v-4qBbFaRaR5fkzZelNSi5BbSc_gHELM2r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201399972</pqid></control><display><type>article</type><title>Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hoffmann, Armin ; Kane, Avinash ; Nettels, Daniel ; Hertzog, David E ; Baumgärtel, Peter ; Lengefeld, Jan ; Reichardt, Gerd ; Horsley, David A ; Seckler, Robert ; Bakajin, Olgica ; Schuler, Benjamin</creator><creatorcontrib>Hoffmann, Armin ; Kane, Avinash ; Nettels, Daniel ; Hertzog, David E ; Baumgärtel, Peter ; Lengefeld, Jan ; Reichardt, Gerd ; Horsley, David A ; Seckler, Robert ; Bakajin, Olgica ; Schuler, Benjamin</creatorcontrib><description>We have used the combination of single-molecule Förster resonance energy transfer and kinetic synchrotron radiation circular dichroism experiments to probe the conformational ensemble of the collapsed unfolded state of the small cold shock protein CspTm under near-native conditions. This regime is physiologically most relevant but difficult to access experimentally, because the equilibrium signal in ensemble experiments is dominated by folded molecules. Here, we avoid this problem in two ways. One is the use of single-molecule Förster resonance energy transfer, which allows the separation of folded and unfolded subpopulations at equilibrium and provides information on long-range intramolecular distance distributions. From experiments with donor and acceptor chromophores placed at different positions within the chain, we find that the distance distributions in unfolded CspTm agree surprisingly well with a Gaussian chain not only at high concentrations of denaturant, where the polypeptide chain is expanded, but also at low denaturant concentrations, where the chain is collapsed. The second, complementary approach is synchrotron radiation circular dichroism spectroscopy of collapsed unfolded molecules transiently populated with a microfluidic device that enables rapid mixing. The results indicate a β-structure content of the collapsed unfolded state of [almost equal to]20% compared with the folded protein. This suggests that collapse can induce secondary structure in an unfolded state without interfering with long-range distance distributions characteristic of a random coil, which were previously found only for highly expanded unfolded proteins.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0604353104</identifier><identifier>PMID: 17185422</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biophysics ; Circular Dichroism - methods ; Data lines ; Dichroism ; Dyes ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Histograms ; Kinetics ; Line spectra ; Microfluidic Analytical Techniques ; Molecules ; Protein Folding ; Protein Structure, Secondary ; Proteins ; Spectroscopy ; Spectrum analysis ; Synchrotron radiation ; Synchrotrons</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-01, Vol.104 (1), p.105-110</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 2, 2007</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-2fe4558d87f0335f3bab1fc521c0b7e37d0bd52c11fb525ef5adc9bf9c5a5e0a3</citedby><cites>FETCH-LOGICAL-c447t-2fe4558d87f0335f3bab1fc521c0b7e37d0bd52c11fb525ef5adc9bf9c5a5e0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/1.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25426058$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25426058$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17185422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoffmann, Armin</creatorcontrib><creatorcontrib>Kane, Avinash</creatorcontrib><creatorcontrib>Nettels, Daniel</creatorcontrib><creatorcontrib>Hertzog, David E</creatorcontrib><creatorcontrib>Baumgärtel, Peter</creatorcontrib><creatorcontrib>Lengefeld, Jan</creatorcontrib><creatorcontrib>Reichardt, Gerd</creatorcontrib><creatorcontrib>Horsley, David A</creatorcontrib><creatorcontrib>Seckler, Robert</creatorcontrib><creatorcontrib>Bakajin, Olgica</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><title>Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We have used the combination of single-molecule Förster resonance energy transfer and kinetic synchrotron radiation circular dichroism experiments to probe the conformational ensemble of the collapsed unfolded state of the small cold shock protein CspTm under near-native conditions. This regime is physiologically most relevant but difficult to access experimentally, because the equilibrium signal in ensemble experiments is dominated by folded molecules. Here, we avoid this problem in two ways. One is the use of single-molecule Förster resonance energy transfer, which allows the separation of folded and unfolded subpopulations at equilibrium and provides information on long-range intramolecular distance distributions. From experiments with donor and acceptor chromophores placed at different positions within the chain, we find that the distance distributions in unfolded CspTm agree surprisingly well with a Gaussian chain not only at high concentrations of denaturant, where the polypeptide chain is expanded, but also at low denaturant concentrations, where the chain is collapsed. The second, complementary approach is synchrotron radiation circular dichroism spectroscopy of collapsed unfolded molecules transiently populated with a microfluidic device that enables rapid mixing. The results indicate a β-structure content of the collapsed unfolded state of [almost equal to]20% compared with the folded protein. This suggests that collapse can induce secondary structure in an unfolded state without interfering with long-range distance distributions characteristic of a random coil, which were previously found only for highly expanded unfolded proteins.</description><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>Circular Dichroism - methods</subject><subject>Data lines</subject><subject>Dichroism</subject><subject>Dyes</subject><subject>Fluorescence</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Histograms</subject><subject>Kinetics</subject><subject>Line spectra</subject><subject>Microfluidic Analytical Techniques</subject><subject>Molecules</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1v1DAQxSMEokvhzAmwOHBLO_6KkwsSqviSijhAz5bj2LtesnawHWAl_ngc7apbOHCxLb3fPL-ZqaqnGC4wCHo5eZUuoAFGOcXA7lUrDB2uG9bB_WoFQETdMsLOqkcpbQGg4y08rM6wwC1nhKyq35_UNDm_RlMM2TiPdBhHNSWDfrq8QalIo6l3YTR6Hg2y4xyiSdp4bZDyA_rmvMlOo7T3elMsYvAoqsGp7MpLu1jKVESDW1SXdihNRhcq6TDtH1cPrBqTeXK8z6ubd2-_Xn2orz-__3j15rrWjIlcE2sY5-3QCguUckt71WOrOcEaemGoGKAfONEY254TbixXg-5622muuAFFz6vXB99p7ndmKOlzVKOcotupuJdBOfm34t1GrsMPiUXDGe6KwaujQQzfZ5Oy3LkyhDIpb8KcZNPSDtMGF_DlP-A2zNGX5iQBTLuuE6RAlwdIlzmkaOxtEgxyWatc1ipPay0Vz-82cOKPe7wTcKk82TGJy8mlnccxm1-5gM_-B570bcoh3gKk_NIAb4v-4qBbFaRaR5fkzZelNSi5BbSc_gHELM2r</recordid><startdate>20070102</startdate><enddate>20070102</enddate><creator>Hoffmann, Armin</creator><creator>Kane, Avinash</creator><creator>Nettels, Daniel</creator><creator>Hertzog, David E</creator><creator>Baumgärtel, Peter</creator><creator>Lengefeld, Jan</creator><creator>Reichardt, Gerd</creator><creator>Horsley, David A</creator><creator>Seckler, Robert</creator><creator>Bakajin, Olgica</creator><creator>Schuler, Benjamin</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070102</creationdate><title>Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy</title><author>Hoffmann, Armin ; Kane, Avinash ; Nettels, Daniel ; Hertzog, David E ; Baumgärtel, Peter ; Lengefeld, Jan ; Reichardt, Gerd ; Horsley, David A ; Seckler, Robert ; Bakajin, Olgica ; Schuler, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-2fe4558d87f0335f3bab1fc521c0b7e37d0bd52c11fb525ef5adc9bf9c5a5e0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>Circular Dichroism - methods</topic><topic>Data lines</topic><topic>Dichroism</topic><topic>Dyes</topic><topic>Fluorescence</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Histograms</topic><topic>Kinetics</topic><topic>Line spectra</topic><topic>Microfluidic Analytical Techniques</topic><topic>Molecules</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffmann, Armin</creatorcontrib><creatorcontrib>Kane, Avinash</creatorcontrib><creatorcontrib>Nettels, Daniel</creatorcontrib><creatorcontrib>Hertzog, David E</creatorcontrib><creatorcontrib>Baumgärtel, Peter</creatorcontrib><creatorcontrib>Lengefeld, Jan</creatorcontrib><creatorcontrib>Reichardt, Gerd</creatorcontrib><creatorcontrib>Horsley, David A</creatorcontrib><creatorcontrib>Seckler, Robert</creatorcontrib><creatorcontrib>Bakajin, Olgica</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffmann, Armin</au><au>Kane, Avinash</au><au>Nettels, Daniel</au><au>Hertzog, David E</au><au>Baumgärtel, Peter</au><au>Lengefeld, Jan</au><au>Reichardt, Gerd</au><au>Horsley, David A</au><au>Seckler, Robert</au><au>Bakajin, Olgica</au><au>Schuler, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-01-02</date><risdate>2007</risdate><volume>104</volume><issue>1</issue><spage>105</spage><epage>110</epage><pages>105-110</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We have used the combination of single-molecule Förster resonance energy transfer and kinetic synchrotron radiation circular dichroism experiments to probe the conformational ensemble of the collapsed unfolded state of the small cold shock protein CspTm under near-native conditions. This regime is physiologically most relevant but difficult to access experimentally, because the equilibrium signal in ensemble experiments is dominated by folded molecules. Here, we avoid this problem in two ways. One is the use of single-molecule Förster resonance energy transfer, which allows the separation of folded and unfolded subpopulations at equilibrium and provides information on long-range intramolecular distance distributions. From experiments with donor and acceptor chromophores placed at different positions within the chain, we find that the distance distributions in unfolded CspTm agree surprisingly well with a Gaussian chain not only at high concentrations of denaturant, where the polypeptide chain is expanded, but also at low denaturant concentrations, where the chain is collapsed. The second, complementary approach is synchrotron radiation circular dichroism spectroscopy of collapsed unfolded molecules transiently populated with a microfluidic device that enables rapid mixing. The results indicate a β-structure content of the collapsed unfolded state of [almost equal to]20% compared with the folded protein. This suggests that collapse can induce secondary structure in an unfolded state without interfering with long-range distance distributions characteristic of a random coil, which were previously found only for highly expanded unfolded proteins.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17185422</pmid><doi>10.1073/pnas.0604353104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2007-01, Vol.104 (1), p.105-110 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1765419 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Biophysics Circular Dichroism - methods Data lines Dichroism Dyes Fluorescence Fluorescence Resonance Energy Transfer Histograms Kinetics Line spectra Microfluidic Analytical Techniques Molecules Protein Folding Protein Structure, Secondary Proteins Spectroscopy Spectrum analysis Synchrotron radiation Synchrotrons |
title | Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20protein%20collapse%20with%20single-molecule%20fluorescence%20and%20kinetic%20synchrotron%20radiation%20circular%20dichroism%20spectroscopy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hoffmann,%20Armin&rft.date=2007-01-02&rft.volume=104&rft.issue=1&rft.spage=105&rft.epage=110&rft.pages=105-110&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0604353104&rft_dat=%3Cjstor_pubme%3E25426058%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201399972&rft_id=info:pmid/17185422&rft_jstor_id=25426058&rfr_iscdi=true |