Pulmonary epithelial response in the rat lung to instilled Montserrat respirable dusts and their major mineral components

Background: The Soufriere Hills, a stratovolcano on Montserrat, started erupting in July 1995, producing volcanic ash, both from dome collapse pyroclastic flows and phreatic explosions. The eruptions/ash resuspension result in high concentrations of suspended particulate matter in the atmosphere, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Occupational and environmental medicine (London, England) England), 2002-07, Vol.59 (7), p.466-472
Hauptverfasser: Housley, D G, Bérubé, K A, Jones, T P, Anderson, S, Pooley, F D, Richards, R J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 472
container_issue 7
container_start_page 466
container_title Occupational and environmental medicine (London, England)
container_volume 59
creator Housley, D G
Bérubé, K A
Jones, T P
Anderson, S
Pooley, F D
Richards, R J
description Background: The Soufriere Hills, a stratovolcano on Montserrat, started erupting in July 1995, producing volcanic ash, both from dome collapse pyroclastic flows and phreatic explosions. The eruptions/ash resuspension result in high concentrations of suspended particulate matter in the atmosphere, which includes cristobalite, a mineral implicated in respiratory disorders. Aims: To conduct toxicological studies on characterised samples of ash, together with major components of the dust mixture (anorthite, cristobalite), and a bioreactive mineral control (DQ12 quartz). Methods: Rats were challenged with a single mass (1 mg) dose of particles via intratracheal instillation and groups sacrificed at one, three, and nine weeks. Acute bioreactivity of the particles was assessed by increases in lung permeability and inflammation, changes in epithelial cell markers, and increase in the size of bronchothoracic lymph nodes. Results: Data indicated that respirable ash derived from pyroclastic flows (20.1% cristobalite) or phreatic explosion (8.6% cristobalite) had minimal bioreactivity in the lung. Anorthite showed low bioreactivity, in contrast to pure cristobalite, which showed progressive increases in lung damage. Conclusion: Results suggests that either the percentage mass of cristobalite particles present in Montserrat ash was not sufficient as a catalyst in the lung environment, or its surface reactivity was masked by the non-reactive volcanic glass components during the process of ash formation.
doi_str_mv 10.1136/oem.59.7.466
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1740313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A90162554</galeid><jstor_id>27731723</jstor_id><sourcerecordid>A90162554</sourcerecordid><originalsourceid>FETCH-LOGICAL-b637t-2f4a20d023c7f8735b9cc719c28dd6657030be25ec5928308beb522840be1a93</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEoqVw4wqKhBAXsvgjjpMLUrV8FKkFDlUPXCzHmWy9OPbWThD998yy0S6gClmyrZlnXvsdTZY9pWRBKa_eBBgWolnIRVlV97JjWkpSyIZV9_HOBS2IpPQoe5TSmhDKJWcPsyPKKJGsEcfZ7dfJDcHreJvDxo7X4Kx2eYS0CT5Bbn2OsTzqMXeTX-VjwFAarXPQ5RfBjwniNrktsFG3DvJuSmPKte-2lTbmg14H3K2HiMomDKgMWPg4e9Brl-DJfJ5klx_eXy7PivMvHz8tT8-LtuJyLFhfakY6wriRfS25aBtjJG0Mq7uuqoQknLTABBjRsJqTuoVWMFaXGKW64SfZ253sZmoH6Aw-jf9Qm2gHNK2CturvjLfXahV-KCpLwilHgVezQAw3E6RRDTYZcE57CFNSsuRcMsIoki_-Iddhih7NoVhNBatqwZB6vaNW2oGyvg_4rFnB7_5ga3qL4dOG0IoJUSJe3IHj6mCw5i5-ljcxpBSh31ulRG0HRuHAKNEoqXBgEH_-Z3sO8DwhCLycAZ2Mdn3U3th04LisRVPXyD3bces0hrjPMyk5lYwffNg0ws99XsfvqpJcCvX5aqkulvXZt3fVlWKHtrfD-v8WfgHXcPAh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781526852</pqid></control><display><type>article</type><title>Pulmonary epithelial response in the rat lung to instilled Montserrat respirable dusts and their major mineral components</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Housley, D G ; Bérubé, K A ; Jones, T P ; Anderson, S ; Pooley, F D ; Richards, R J</creator><creatorcontrib>Housley, D G ; Bérubé, K A ; Jones, T P ; Anderson, S ; Pooley, F D ; Richards, R J</creatorcontrib><description>Background: The Soufriere Hills, a stratovolcano on Montserrat, started erupting in July 1995, producing volcanic ash, both from dome collapse pyroclastic flows and phreatic explosions. The eruptions/ash resuspension result in high concentrations of suspended particulate matter in the atmosphere, which includes cristobalite, a mineral implicated in respiratory disorders. Aims: To conduct toxicological studies on characterised samples of ash, together with major components of the dust mixture (anorthite, cristobalite), and a bioreactive mineral control (DQ12 quartz). Methods: Rats were challenged with a single mass (1 mg) dose of particles via intratracheal instillation and groups sacrificed at one, three, and nine weeks. Acute bioreactivity of the particles was assessed by increases in lung permeability and inflammation, changes in epithelial cell markers, and increase in the size of bronchothoracic lymph nodes. Results: Data indicated that respirable ash derived from pyroclastic flows (20.1% cristobalite) or phreatic explosion (8.6% cristobalite) had minimal bioreactivity in the lung. Anorthite showed low bioreactivity, in contrast to pure cristobalite, which showed progressive increases in lung damage. Conclusion: Results suggests that either the percentage mass of cristobalite particles present in Montserrat ash was not sufficient as a catalyst in the lung environment, or its surface reactivity was masked by the non-reactive volcanic glass components during the process of ash formation.</description><identifier>ISSN: 1351-0711</identifier><identifier>EISSN: 1470-7926</identifier><identifier>DOI: 10.1136/oem.59.7.466</identifier><identifier>PMID: 12107295</identifier><language>eng</language><publisher>London: BMJ Publishing Group Ltd</publisher><subject>Aluminum Silicates - toxicity ; Animals ; ash ; Biological and medical sciences ; bioreactivity ; Bronchoalveolar Lavage Fluid - cytology ; Chemical and industrial products toxicology. Toxic occupational diseases ; cristobalite ; Dust ; Dust - adverse effects ; Epithelial Cells - drug effects ; Explosions ; Feldspars ; Gases, Asphyxiating and poisonous ; GGT ; Health aspects ; image analysis ; inflammation ; Inorganic dusts (pneumoconiosises) and organic dusts (byssinosis etc.) ; lung ; Lung - pathology ; Lungs ; Lymph nodes ; Lymphatic system ; Male ; Medical sciences ; Mineralogy ; Minerals ; Minerals - analysis ; Organ Size - drug effects ; Original ; Particle mass ; Particulate matter ; PMN ; polymorphonuclear leucocyte ; Pulmonary arteries ; Pulmonary Surfactants - metabolism ; Pyroclastic flows ; Quartz ; Rats ; Rats, Sprague-Dawley ; Silicon Dioxide - toxicity ; TEM ; Therapeutic irrigation ; Toxicology ; transmission electron microscopy ; Volcanic ash ; Volcanic ash, tuff, etc ; Volcanic Eruptions - adverse effects ; Volcanoes ; West Indies ; x ray diffraction ; x ray fluorescence ; XRD ; XRF ; γ glutamyltransferase</subject><ispartof>Occupational and environmental medicine (London, England), 2002-07, Vol.59 (7), p.466-472</ispartof><rights>Copyright 2002 Occupational and Environmental Medicine</rights><rights>2002 INIST-CNRS</rights><rights>COPYRIGHT 2002 BMJ Publishing Group Ltd.</rights><rights>Copyright: 2002 Copyright 2002 Occupational and Environmental Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b637t-2f4a20d023c7f8735b9cc719c28dd6657030be25ec5928308beb522840be1a93</citedby><cites>FETCH-LOGICAL-b637t-2f4a20d023c7f8735b9cc719c28dd6657030be25ec5928308beb522840be1a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27731723$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27731723$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13785988$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12107295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Housley, D G</creatorcontrib><creatorcontrib>Bérubé, K A</creatorcontrib><creatorcontrib>Jones, T P</creatorcontrib><creatorcontrib>Anderson, S</creatorcontrib><creatorcontrib>Pooley, F D</creatorcontrib><creatorcontrib>Richards, R J</creatorcontrib><title>Pulmonary epithelial response in the rat lung to instilled Montserrat respirable dusts and their major mineral components</title><title>Occupational and environmental medicine (London, England)</title><addtitle>Occup Environ Med</addtitle><description>Background: The Soufriere Hills, a stratovolcano on Montserrat, started erupting in July 1995, producing volcanic ash, both from dome collapse pyroclastic flows and phreatic explosions. The eruptions/ash resuspension result in high concentrations of suspended particulate matter in the atmosphere, which includes cristobalite, a mineral implicated in respiratory disorders. Aims: To conduct toxicological studies on characterised samples of ash, together with major components of the dust mixture (anorthite, cristobalite), and a bioreactive mineral control (DQ12 quartz). Methods: Rats were challenged with a single mass (1 mg) dose of particles via intratracheal instillation and groups sacrificed at one, three, and nine weeks. Acute bioreactivity of the particles was assessed by increases in lung permeability and inflammation, changes in epithelial cell markers, and increase in the size of bronchothoracic lymph nodes. Results: Data indicated that respirable ash derived from pyroclastic flows (20.1% cristobalite) or phreatic explosion (8.6% cristobalite) had minimal bioreactivity in the lung. Anorthite showed low bioreactivity, in contrast to pure cristobalite, which showed progressive increases in lung damage. Conclusion: Results suggests that either the percentage mass of cristobalite particles present in Montserrat ash was not sufficient as a catalyst in the lung environment, or its surface reactivity was masked by the non-reactive volcanic glass components during the process of ash formation.</description><subject>Aluminum Silicates - toxicity</subject><subject>Animals</subject><subject>ash</subject><subject>Biological and medical sciences</subject><subject>bioreactivity</subject><subject>Bronchoalveolar Lavage Fluid - cytology</subject><subject>Chemical and industrial products toxicology. Toxic occupational diseases</subject><subject>cristobalite</subject><subject>Dust</subject><subject>Dust - adverse effects</subject><subject>Epithelial Cells - drug effects</subject><subject>Explosions</subject><subject>Feldspars</subject><subject>Gases, Asphyxiating and poisonous</subject><subject>GGT</subject><subject>Health aspects</subject><subject>image analysis</subject><subject>inflammation</subject><subject>Inorganic dusts (pneumoconiosises) and organic dusts (byssinosis etc.)</subject><subject>lung</subject><subject>Lung - pathology</subject><subject>Lungs</subject><subject>Lymph nodes</subject><subject>Lymphatic system</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Minerals - analysis</subject><subject>Organ Size - drug effects</subject><subject>Original</subject><subject>Particle mass</subject><subject>Particulate matter</subject><subject>PMN</subject><subject>polymorphonuclear leucocyte</subject><subject>Pulmonary arteries</subject><subject>Pulmonary Surfactants - metabolism</subject><subject>Pyroclastic flows</subject><subject>Quartz</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Silicon Dioxide - toxicity</subject><subject>TEM</subject><subject>Therapeutic irrigation</subject><subject>Toxicology</subject><subject>transmission electron microscopy</subject><subject>Volcanic ash</subject><subject>Volcanic ash, tuff, etc</subject><subject>Volcanic Eruptions - adverse effects</subject><subject>Volcanoes</subject><subject>West Indies</subject><subject>x ray diffraction</subject><subject>x ray fluorescence</subject><subject>XRD</subject><subject>XRF</subject><subject>γ glutamyltransferase</subject><issn>1351-0711</issn><issn>1470-7926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kk1v1DAQhiMEoqVw4wqKhBAXsvgjjpMLUrV8FKkFDlUPXCzHmWy9OPbWThD998yy0S6gClmyrZlnXvsdTZY9pWRBKa_eBBgWolnIRVlV97JjWkpSyIZV9_HOBS2IpPQoe5TSmhDKJWcPsyPKKJGsEcfZ7dfJDcHreJvDxo7X4Kx2eYS0CT5Bbn2OsTzqMXeTX-VjwFAarXPQ5RfBjwniNrktsFG3DvJuSmPKte-2lTbmg14H3K2HiMomDKgMWPg4e9Brl-DJfJ5klx_eXy7PivMvHz8tT8-LtuJyLFhfakY6wriRfS25aBtjJG0Mq7uuqoQknLTABBjRsJqTuoVWMFaXGKW64SfZ253sZmoH6Aw-jf9Qm2gHNK2CturvjLfXahV-KCpLwilHgVezQAw3E6RRDTYZcE57CFNSsuRcMsIoki_-Iddhih7NoVhNBatqwZB6vaNW2oGyvg_4rFnB7_5ga3qL4dOG0IoJUSJe3IHj6mCw5i5-ljcxpBSh31ulRG0HRuHAKNEoqXBgEH_-Z3sO8DwhCLycAZ2Mdn3U3th04LisRVPXyD3bces0hrjPMyk5lYwffNg0ws99XsfvqpJcCvX5aqkulvXZt3fVlWKHtrfD-v8WfgHXcPAh</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Housley, D G</creator><creator>Bérubé, K A</creator><creator>Jones, T P</creator><creator>Anderson, S</creator><creator>Pooley, F D</creator><creator>Richards, R J</creator><general>BMJ Publishing Group Ltd</general><general>BMJ Publishing Group</general><general>BMJ</general><general>BMJ Publishing Group LTD</general><general>BMJ Group</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>7QQ</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>5PM</scope></search><sort><creationdate>20020701</creationdate><title>Pulmonary epithelial response in the rat lung to instilled Montserrat respirable dusts and their major mineral components</title><author>Housley, D G ; Bérubé, K A ; Jones, T P ; Anderson, S ; Pooley, F D ; Richards, R J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b637t-2f4a20d023c7f8735b9cc719c28dd6657030be25ec5928308beb522840be1a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aluminum Silicates - toxicity</topic><topic>Animals</topic><topic>ash</topic><topic>Biological and medical sciences</topic><topic>bioreactivity</topic><topic>Bronchoalveolar Lavage Fluid - cytology</topic><topic>Chemical and industrial products toxicology. Toxic occupational diseases</topic><topic>cristobalite</topic><topic>Dust</topic><topic>Dust - adverse effects</topic><topic>Epithelial Cells - drug effects</topic><topic>Explosions</topic><topic>Feldspars</topic><topic>Gases, Asphyxiating and poisonous</topic><topic>GGT</topic><topic>Health aspects</topic><topic>image analysis</topic><topic>inflammation</topic><topic>Inorganic dusts (pneumoconiosises) and organic dusts (byssinosis etc.)</topic><topic>lung</topic><topic>Lung - pathology</topic><topic>Lungs</topic><topic>Lymph nodes</topic><topic>Lymphatic system</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Minerals - analysis</topic><topic>Organ Size - drug effects</topic><topic>Original</topic><topic>Particle mass</topic><topic>Particulate matter</topic><topic>PMN</topic><topic>polymorphonuclear leucocyte</topic><topic>Pulmonary arteries</topic><topic>Pulmonary Surfactants - metabolism</topic><topic>Pyroclastic flows</topic><topic>Quartz</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Silicon Dioxide - toxicity</topic><topic>TEM</topic><topic>Therapeutic irrigation</topic><topic>Toxicology</topic><topic>transmission electron microscopy</topic><topic>Volcanic ash</topic><topic>Volcanic ash, tuff, etc</topic><topic>Volcanic Eruptions - adverse effects</topic><topic>Volcanoes</topic><topic>West Indies</topic><topic>x ray diffraction</topic><topic>x ray fluorescence</topic><topic>XRD</topic><topic>XRF</topic><topic>γ glutamyltransferase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Housley, D G</creatorcontrib><creatorcontrib>Bérubé, K A</creatorcontrib><creatorcontrib>Jones, T P</creatorcontrib><creatorcontrib>Anderson, S</creatorcontrib><creatorcontrib>Pooley, F D</creatorcontrib><creatorcontrib>Richards, R J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Ceramic Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Occupational and environmental medicine (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Housley, D G</au><au>Bérubé, K A</au><au>Jones, T P</au><au>Anderson, S</au><au>Pooley, F D</au><au>Richards, R J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulmonary epithelial response in the rat lung to instilled Montserrat respirable dusts and their major mineral components</atitle><jtitle>Occupational and environmental medicine (London, England)</jtitle><addtitle>Occup Environ Med</addtitle><date>2002-07-01</date><risdate>2002</risdate><volume>59</volume><issue>7</issue><spage>466</spage><epage>472</epage><pages>466-472</pages><issn>1351-0711</issn><eissn>1470-7926</eissn><abstract>Background: The Soufriere Hills, a stratovolcano on Montserrat, started erupting in July 1995, producing volcanic ash, both from dome collapse pyroclastic flows and phreatic explosions. The eruptions/ash resuspension result in high concentrations of suspended particulate matter in the atmosphere, which includes cristobalite, a mineral implicated in respiratory disorders. Aims: To conduct toxicological studies on characterised samples of ash, together with major components of the dust mixture (anorthite, cristobalite), and a bioreactive mineral control (DQ12 quartz). Methods: Rats were challenged with a single mass (1 mg) dose of particles via intratracheal instillation and groups sacrificed at one, three, and nine weeks. Acute bioreactivity of the particles was assessed by increases in lung permeability and inflammation, changes in epithelial cell markers, and increase in the size of bronchothoracic lymph nodes. Results: Data indicated that respirable ash derived from pyroclastic flows (20.1% cristobalite) or phreatic explosion (8.6% cristobalite) had minimal bioreactivity in the lung. Anorthite showed low bioreactivity, in contrast to pure cristobalite, which showed progressive increases in lung damage. Conclusion: Results suggests that either the percentage mass of cristobalite particles present in Montserrat ash was not sufficient as a catalyst in the lung environment, or its surface reactivity was masked by the non-reactive volcanic glass components during the process of ash formation.</abstract><cop>London</cop><pub>BMJ Publishing Group Ltd</pub><pmid>12107295</pmid><doi>10.1136/oem.59.7.466</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1351-0711
ispartof Occupational and environmental medicine (London, England), 2002-07, Vol.59 (7), p.466-472
issn 1351-0711
1470-7926
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1740313
source Jstor Complete Legacy; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Aluminum Silicates - toxicity
Animals
ash
Biological and medical sciences
bioreactivity
Bronchoalveolar Lavage Fluid - cytology
Chemical and industrial products toxicology. Toxic occupational diseases
cristobalite
Dust
Dust - adverse effects
Epithelial Cells - drug effects
Explosions
Feldspars
Gases, Asphyxiating and poisonous
GGT
Health aspects
image analysis
inflammation
Inorganic dusts (pneumoconiosises) and organic dusts (byssinosis etc.)
lung
Lung - pathology
Lungs
Lymph nodes
Lymphatic system
Male
Medical sciences
Mineralogy
Minerals
Minerals - analysis
Organ Size - drug effects
Original
Particle mass
Particulate matter
PMN
polymorphonuclear leucocyte
Pulmonary arteries
Pulmonary Surfactants - metabolism
Pyroclastic flows
Quartz
Rats
Rats, Sprague-Dawley
Silicon Dioxide - toxicity
TEM
Therapeutic irrigation
Toxicology
transmission electron microscopy
Volcanic ash
Volcanic ash, tuff, etc
Volcanic Eruptions - adverse effects
Volcanoes
West Indies
x ray diffraction
x ray fluorescence
XRD
XRF
γ glutamyltransferase
title Pulmonary epithelial response in the rat lung to instilled Montserrat respirable dusts and their major mineral components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A08%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulmonary%20epithelial%20response%20in%20the%20rat%20lung%20to%20instilled%20Montserrat%20respirable%20dusts%20and%20their%20major%20mineral%20components&rft.jtitle=Occupational%20and%20environmental%20medicine%20(London,%20England)&rft.au=Housley,%20D%20G&rft.date=2002-07-01&rft.volume=59&rft.issue=7&rft.spage=466&rft.epage=472&rft.pages=466-472&rft.issn=1351-0711&rft.eissn=1470-7926&rft_id=info:doi/10.1136/oem.59.7.466&rft_dat=%3Cgale_pubme%3EA90162554%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781526852&rft_id=info:pmid/12107295&rft_galeid=A90162554&rft_jstor_id=27731723&rfr_iscdi=true