Effects of cellular redox balance on induction of apoptosis by eicosapentaenoic acid in HT29 colorectal adenocarcinoma cells and rat colon in vivo

BACKGROUND AND AIMS Epidemiological evidence suggests n-3 polyunsaturated lipids may protect against colorectal neoplasia. Consumption of fish oil modulates crypt cytokinetics in humans, and crypt apoptosis in animal models. To explore these effects, we investigated involvement of caspase enzymes an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gut 2001-07, Vol.49 (1), p.97-105
Hauptverfasser: Latham, P, Lund, E K, Brown, J C, Johnson, I T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue 1
container_start_page 97
container_title Gut
container_volume 49
creator Latham, P
Lund, E K
Brown, J C
Johnson, I T
description BACKGROUND AND AIMS Epidemiological evidence suggests n-3 polyunsaturated lipids may protect against colorectal neoplasia. Consumption of fish oil modulates crypt cytokinetics in humans, and crypt apoptosis in animal models. To explore these effects, we investigated involvement of caspase enzymes and cellular redox balance in the induction of apoptosis by eicosapentaenoic acid (EPA) in HT29 cells, and in rat colon in vivo. METHODS Survival of HT29 cells grown with EPA in the presence of caspase inhibitors, antioxidants, or buthionine sulphoximine, an inhibitor of glutathione neosynthesis, was determined. The effects of EPA enriched fish oil and glutathione depletion on apoptosis in rat colon were assessed using microdissected crypts. RESULTS Treatment of HT29 cells with EPA reduced viable cell number and activated caspase 3, prior to cell detachment. Antioxidants and caspase inhibitors blocked HT29 cell death whereas glutathione depletion increased it. Rats fed fish oil had higher crypt cell apoptosis than those fed corn oil, and glutathione depletion enhanced this effect. CONCLUSIONS Incorporation of EPA into colonic epithelial cell lipids increases apoptosis. The results of this study, using both an animal and cell line model, support the hypothesis that this effect is mediated via cellular redox tone, and is sensitive to glutathione metabolism. The data suggest a mechanism whereby polyunsaturated fatty acids may influence the susceptibility of colorectal crypt cells to induction or progression of neoplasia.
doi_str_mv 10.1136/gut.49.1.97
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1728373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A76905915</galeid><sourcerecordid>A76905915</sourcerecordid><originalsourceid>FETCH-LOGICAL-b605t-7af0c8399a935c8bad5ce5ed601f61f617d5eeb9295ad013f57527fc47fc49813</originalsourceid><addsrcrecordid>eNp9kl1v0zAUhiMEYmNwxT2yGOIGUuwmjuMbpKkaDFGBJo1xaZ34o7gkdrGTavsb_GKctVoLqlAc2fJ59J4Pv1n2nOAJIUX1bjH0k5JPyISzB9kxKas6L6Z1_TA7xpiwnLKSH2VPYlxijOuak8fZESElKQhhx9nvc2O07CPyBkndtkMLAQWt_A1qoAUnNfIOWacG2dt0Shis_Kr30UbU3CJtpY-w0q4H7byVCKRViUcXV1OOpG99SPLQIlApLiFI63wHd7kiAqdQgP6OG7OgtV37p9kjA23Uz7b7Sfbtw_nV7CKff_34aXY2z5sK0z5nYLCsC86BF1TWDSgqNdWqwsRU42KKat3wKaegMCkMZXTKjCzHn9ekOMneb3RXQ9NpJVMPAVqxCraDcCs8WPF3xNkfYuHXgrBpXbAiCbzeCgT_a9CxF52NY2PgtB-iYDglJ1WdwNN_wKUfgkvNJS3GeUVKWibq5YZaQKuFdcanrHKUFGes4phyQhP09gC00E6nCr3TxqbrfTw_gKdP6S693AH-zYaXwccYtLkfB8FidJtIbhMlF0RwlugX-xPcsVt7JeDVFoAooTUhGcrGPc2KM8p3VdrY65v7MISfomIFo-LL9Ux8v_48v-SXhah3g2-65X8L_APHNPoT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779961454</pqid></control><display><type>article</type><title>Effects of cellular redox balance on induction of apoptosis by eicosapentaenoic acid in HT29 colorectal adenocarcinoma cells and rat colon in vivo</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Latham, P ; Lund, E K ; Brown, J C ; Johnson, I T</creator><creatorcontrib>Latham, P ; Lund, E K ; Brown, J C ; Johnson, I T</creatorcontrib><description>BACKGROUND AND AIMS Epidemiological evidence suggests n-3 polyunsaturated lipids may protect against colorectal neoplasia. Consumption of fish oil modulates crypt cytokinetics in humans, and crypt apoptosis in animal models. To explore these effects, we investigated involvement of caspase enzymes and cellular redox balance in the induction of apoptosis by eicosapentaenoic acid (EPA) in HT29 cells, and in rat colon in vivo. METHODS Survival of HT29 cells grown with EPA in the presence of caspase inhibitors, antioxidants, or buthionine sulphoximine, an inhibitor of glutathione neosynthesis, was determined. The effects of EPA enriched fish oil and glutathione depletion on apoptosis in rat colon were assessed using microdissected crypts. RESULTS Treatment of HT29 cells with EPA reduced viable cell number and activated caspase 3, prior to cell detachment. Antioxidants and caspase inhibitors blocked HT29 cell death whereas glutathione depletion increased it. Rats fed fish oil had higher crypt cell apoptosis than those fed corn oil, and glutathione depletion enhanced this effect. CONCLUSIONS Incorporation of EPA into colonic epithelial cell lipids increases apoptosis. The results of this study, using both an animal and cell line model, support the hypothesis that this effect is mediated via cellular redox tone, and is sensitive to glutathione metabolism. The data suggest a mechanism whereby polyunsaturated fatty acids may influence the susceptibility of colorectal crypt cells to induction or progression of neoplasia.</description><identifier>ISSN: 0017-5749</identifier><identifier>EISSN: 1468-3288</identifier><identifier>EISSN: 1458-3288</identifier><identifier>DOI: 10.1136/gut.49.1.97</identifier><identifier>PMID: 11413117</identifier><identifier>CODEN: GUTTAK</identifier><language>eng</language><publisher>London: BMJ Publishing Group Ltd and British Society of Gastroenterology</publisher><subject>Animals ; Antioxidants - pharmacology ; Apoptosis ; Apoptosis - drug effects ; Apoptosis - physiology ; Biological and medical sciences ; Buthionine Sulfoximine - pharmacology ; caspase ; Caspase Inhibitors ; Cell death ; Cell Survival ; Colorectal cancer ; Corn Oil - administration &amp; dosage ; Corn Oil - chemistry ; eicosapentaenoic acid ; Eicosapentaenoic Acid - pharmacology ; Enzyme Induction - drug effects ; Enzyme Inhibitors - pharmacology ; Fish oils ; Fish Oils - administration &amp; dosage ; Fish Oils - chemistry ; Gastroenterology. Liver. Pancreas. Abdomen ; glutathione ; Health aspects ; HT29 Cells - drug effects ; HT29 Cells - metabolism ; Humans ; Lipids ; Male ; Medical sciences ; Oxidation-Reduction - drug effects ; Physiological aspects ; Prevention ; rat ; Rats ; Rats as laboratory animals ; Rats, Wistar ; redox ; Rodents ; Stomach. Duodenum. Small intestine. Colon. Rectum. Anus ; Tumor Cells, Cultured ; Tumors</subject><ispartof>Gut, 2001-07, Vol.49 (1), p.97-105</ispartof><rights>British Society of Gastroenterology</rights><rights>2001 INIST-CNRS</rights><rights>COPYRIGHT 2001 BMJ Publishing Group Ltd.</rights><rights>Copyright: 2001 British Society of Gastroenterology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b605t-7af0c8399a935c8bad5ce5ed601f61f617d5eeb9295ad013f57527fc47fc49813</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1728373/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1728373/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1069759$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11413117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Latham, P</creatorcontrib><creatorcontrib>Lund, E K</creatorcontrib><creatorcontrib>Brown, J C</creatorcontrib><creatorcontrib>Johnson, I T</creatorcontrib><title>Effects of cellular redox balance on induction of apoptosis by eicosapentaenoic acid in HT29 colorectal adenocarcinoma cells and rat colon in vivo</title><title>Gut</title><addtitle>Gut</addtitle><description>BACKGROUND AND AIMS Epidemiological evidence suggests n-3 polyunsaturated lipids may protect against colorectal neoplasia. Consumption of fish oil modulates crypt cytokinetics in humans, and crypt apoptosis in animal models. To explore these effects, we investigated involvement of caspase enzymes and cellular redox balance in the induction of apoptosis by eicosapentaenoic acid (EPA) in HT29 cells, and in rat colon in vivo. METHODS Survival of HT29 cells grown with EPA in the presence of caspase inhibitors, antioxidants, or buthionine sulphoximine, an inhibitor of glutathione neosynthesis, was determined. The effects of EPA enriched fish oil and glutathione depletion on apoptosis in rat colon were assessed using microdissected crypts. RESULTS Treatment of HT29 cells with EPA reduced viable cell number and activated caspase 3, prior to cell detachment. Antioxidants and caspase inhibitors blocked HT29 cell death whereas glutathione depletion increased it. Rats fed fish oil had higher crypt cell apoptosis than those fed corn oil, and glutathione depletion enhanced this effect. CONCLUSIONS Incorporation of EPA into colonic epithelial cell lipids increases apoptosis. The results of this study, using both an animal and cell line model, support the hypothesis that this effect is mediated via cellular redox tone, and is sensitive to glutathione metabolism. The data suggest a mechanism whereby polyunsaturated fatty acids may influence the susceptibility of colorectal crypt cells to induction or progression of neoplasia.</description><subject>Animals</subject><subject>Antioxidants - pharmacology</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - physiology</subject><subject>Biological and medical sciences</subject><subject>Buthionine Sulfoximine - pharmacology</subject><subject>caspase</subject><subject>Caspase Inhibitors</subject><subject>Cell death</subject><subject>Cell Survival</subject><subject>Colorectal cancer</subject><subject>Corn Oil - administration &amp; dosage</subject><subject>Corn Oil - chemistry</subject><subject>eicosapentaenoic acid</subject><subject>Eicosapentaenoic Acid - pharmacology</subject><subject>Enzyme Induction - drug effects</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Fish oils</subject><subject>Fish Oils - administration &amp; dosage</subject><subject>Fish Oils - chemistry</subject><subject>Gastroenterology. Liver. Pancreas. Abdomen</subject><subject>glutathione</subject><subject>Health aspects</subject><subject>HT29 Cells - drug effects</subject><subject>HT29 Cells - metabolism</subject><subject>Humans</subject><subject>Lipids</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Physiological aspects</subject><subject>Prevention</subject><subject>rat</subject><subject>Rats</subject><subject>Rats as laboratory animals</subject><subject>Rats, Wistar</subject><subject>redox</subject><subject>Rodents</subject><subject>Stomach. Duodenum. Small intestine. Colon. Rectum. Anus</subject><subject>Tumor Cells, Cultured</subject><subject>Tumors</subject><issn>0017-5749</issn><issn>1468-3288</issn><issn>1458-3288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kl1v0zAUhiMEYmNwxT2yGOIGUuwmjuMbpKkaDFGBJo1xaZ34o7gkdrGTavsb_GKctVoLqlAc2fJ59J4Pv1n2nOAJIUX1bjH0k5JPyISzB9kxKas6L6Z1_TA7xpiwnLKSH2VPYlxijOuak8fZESElKQhhx9nvc2O07CPyBkndtkMLAQWt_A1qoAUnNfIOWacG2dt0Shis_Kr30UbU3CJtpY-w0q4H7byVCKRViUcXV1OOpG99SPLQIlApLiFI63wHd7kiAqdQgP6OG7OgtV37p9kjA23Uz7b7Sfbtw_nV7CKff_34aXY2z5sK0z5nYLCsC86BF1TWDSgqNdWqwsRU42KKat3wKaegMCkMZXTKjCzHn9ekOMneb3RXQ9NpJVMPAVqxCraDcCs8WPF3xNkfYuHXgrBpXbAiCbzeCgT_a9CxF52NY2PgtB-iYDglJ1WdwNN_wKUfgkvNJS3GeUVKWibq5YZaQKuFdcanrHKUFGes4phyQhP09gC00E6nCr3TxqbrfTw_gKdP6S693AH-zYaXwccYtLkfB8FidJtIbhMlF0RwlugX-xPcsVt7JeDVFoAooTUhGcrGPc2KM8p3VdrY65v7MISfomIFo-LL9Ux8v_48v-SXhah3g2-65X8L_APHNPoT</recordid><startdate>20010701</startdate><enddate>20010701</enddate><creator>Latham, P</creator><creator>Lund, E K</creator><creator>Brown, J C</creator><creator>Johnson, I T</creator><general>BMJ Publishing Group Ltd and British Society of Gastroenterology</general><general>BMJ</general><general>BMJ Publishing Group Ltd</general><general>BMJ Publishing Group LTD</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010701</creationdate><title>Effects of cellular redox balance on induction of apoptosis by eicosapentaenoic acid in HT29 colorectal adenocarcinoma cells and rat colon in vivo</title><author>Latham, P ; Lund, E K ; Brown, J C ; Johnson, I T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b605t-7af0c8399a935c8bad5ce5ed601f61f617d5eeb9295ad013f57527fc47fc49813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Antioxidants - pharmacology</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - physiology</topic><topic>Biological and medical sciences</topic><topic>Buthionine Sulfoximine - pharmacology</topic><topic>caspase</topic><topic>Caspase Inhibitors</topic><topic>Cell death</topic><topic>Cell Survival</topic><topic>Colorectal cancer</topic><topic>Corn Oil - administration &amp; dosage</topic><topic>Corn Oil - chemistry</topic><topic>eicosapentaenoic acid</topic><topic>Eicosapentaenoic Acid - pharmacology</topic><topic>Enzyme Induction - drug effects</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Fish oils</topic><topic>Fish Oils - administration &amp; dosage</topic><topic>Fish Oils - chemistry</topic><topic>Gastroenterology. Liver. Pancreas. Abdomen</topic><topic>glutathione</topic><topic>Health aspects</topic><topic>HT29 Cells - drug effects</topic><topic>HT29 Cells - metabolism</topic><topic>Humans</topic><topic>Lipids</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Physiological aspects</topic><topic>Prevention</topic><topic>rat</topic><topic>Rats</topic><topic>Rats as laboratory animals</topic><topic>Rats, Wistar</topic><topic>redox</topic><topic>Rodents</topic><topic>Stomach. Duodenum. Small intestine. Colon. Rectum. Anus</topic><topic>Tumor Cells, Cultured</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Latham, P</creatorcontrib><creatorcontrib>Lund, E K</creatorcontrib><creatorcontrib>Brown, J C</creatorcontrib><creatorcontrib>Johnson, I T</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gut</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Latham, P</au><au>Lund, E K</au><au>Brown, J C</au><au>Johnson, I T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of cellular redox balance on induction of apoptosis by eicosapentaenoic acid in HT29 colorectal adenocarcinoma cells and rat colon in vivo</atitle><jtitle>Gut</jtitle><addtitle>Gut</addtitle><date>2001-07-01</date><risdate>2001</risdate><volume>49</volume><issue>1</issue><spage>97</spage><epage>105</epage><pages>97-105</pages><issn>0017-5749</issn><eissn>1468-3288</eissn><eissn>1458-3288</eissn><coden>GUTTAK</coden><abstract>BACKGROUND AND AIMS Epidemiological evidence suggests n-3 polyunsaturated lipids may protect against colorectal neoplasia. Consumption of fish oil modulates crypt cytokinetics in humans, and crypt apoptosis in animal models. To explore these effects, we investigated involvement of caspase enzymes and cellular redox balance in the induction of apoptosis by eicosapentaenoic acid (EPA) in HT29 cells, and in rat colon in vivo. METHODS Survival of HT29 cells grown with EPA in the presence of caspase inhibitors, antioxidants, or buthionine sulphoximine, an inhibitor of glutathione neosynthesis, was determined. The effects of EPA enriched fish oil and glutathione depletion on apoptosis in rat colon were assessed using microdissected crypts. RESULTS Treatment of HT29 cells with EPA reduced viable cell number and activated caspase 3, prior to cell detachment. Antioxidants and caspase inhibitors blocked HT29 cell death whereas glutathione depletion increased it. Rats fed fish oil had higher crypt cell apoptosis than those fed corn oil, and glutathione depletion enhanced this effect. CONCLUSIONS Incorporation of EPA into colonic epithelial cell lipids increases apoptosis. The results of this study, using both an animal and cell line model, support the hypothesis that this effect is mediated via cellular redox tone, and is sensitive to glutathione metabolism. The data suggest a mechanism whereby polyunsaturated fatty acids may influence the susceptibility of colorectal crypt cells to induction or progression of neoplasia.</abstract><cop>London</cop><pub>BMJ Publishing Group Ltd and British Society of Gastroenterology</pub><pmid>11413117</pmid><doi>10.1136/gut.49.1.97</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-5749
ispartof Gut, 2001-07, Vol.49 (1), p.97-105
issn 0017-5749
1468-3288
1458-3288
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1728373
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Antioxidants - pharmacology
Apoptosis
Apoptosis - drug effects
Apoptosis - physiology
Biological and medical sciences
Buthionine Sulfoximine - pharmacology
caspase
Caspase Inhibitors
Cell death
Cell Survival
Colorectal cancer
Corn Oil - administration & dosage
Corn Oil - chemistry
eicosapentaenoic acid
Eicosapentaenoic Acid - pharmacology
Enzyme Induction - drug effects
Enzyme Inhibitors - pharmacology
Fish oils
Fish Oils - administration & dosage
Fish Oils - chemistry
Gastroenterology. Liver. Pancreas. Abdomen
glutathione
Health aspects
HT29 Cells - drug effects
HT29 Cells - metabolism
Humans
Lipids
Male
Medical sciences
Oxidation-Reduction - drug effects
Physiological aspects
Prevention
rat
Rats
Rats as laboratory animals
Rats, Wistar
redox
Rodents
Stomach. Duodenum. Small intestine. Colon. Rectum. Anus
Tumor Cells, Cultured
Tumors
title Effects of cellular redox balance on induction of apoptosis by eicosapentaenoic acid in HT29 colorectal adenocarcinoma cells and rat colon in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20cellular%20redox%20balance%20on%20induction%20of%20apoptosis%20by%20eicosapentaenoic%20acid%20in%20HT29%20colorectal%20adenocarcinoma%20cells%20and%20rat%20colon%20in%20vivo&rft.jtitle=Gut&rft.au=Latham,%20P&rft.date=2001-07-01&rft.volume=49&rft.issue=1&rft.spage=97&rft.epage=105&rft.pages=97-105&rft.issn=0017-5749&rft.eissn=1468-3288&rft.coden=GUTTAK&rft_id=info:doi/10.1136/gut.49.1.97&rft_dat=%3Cgale_pubme%3EA76905915%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779961454&rft_id=info:pmid/11413117&rft_galeid=A76905915&rfr_iscdi=true