Artificial neural network for risk assessment in preterm neonates

AIM To predict the individual neonatal mortality risk of preterm infants using an artificial neural network “trained” on admission data. METHODS A total of 890 preterm neonates (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of disease in childhood. Fetal and neonatal edition 1998-09, Vol.79 (2), p.F129-F134
Hauptverfasser: Zernikow, B, Holtmannspoetter, K, Michel, E, Pielemeier, W, Hornschuh, F, Westermann, A, Hennecke, K H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page F134
container_issue 2
container_start_page F129
container_title Archives of disease in childhood. Fetal and neonatal edition
container_volume 79
creator Zernikow, B
Holtmannspoetter, K
Michel, E
Pielemeier, W
Hornschuh, F
Westermann, A
Hennecke, K H
description AIM To predict the individual neonatal mortality risk of preterm infants using an artificial neural network “trained” on admission data. METHODS A total of 890 preterm neonates (
doi_str_mv 10.1136/fn.79.2.F129
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1720838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4021324411</sourcerecordid><originalsourceid>FETCH-LOGICAL-b506t-93eddc665aa4a6338c9d3fbd858304de56340c6580ab95ef4b9a6b594db9381a3</originalsourceid><addsrcrecordid>eNp9kUuLFDEURoMo4zi6cysUKLqx2jwqr43QFI4PBt2Mugy3UommuyrVk1T5-Pem7aZRF67uhe_wcS4XoYcErwhh4oWPK6lXdHVJqL6FzkkjVE0xp7fLzriuqdbqLrqX8wZjTKSUZ-hMK6pkg8_Rep3m4IMNMFTRLen3mL9PaVv5KVUp5G0FObucRxfnKsRql9zs0liwKcLs8n10x8OQ3YPjvEAfL19dt2_qqw-v37brq7rjWMy1Zq7vrRAcoAHBmLK6Z77rFVcMN73jgjXYCq4wdJo733QaRMd103eaKQLsAr089O6WbnS9LTrF1uxSGCH9NBME83cSw1fzZfpmiKRYMVUKnh4L0nSzuDybMWTrhgHKKUs2EmMpOeEFfPwPuJmWFMtxpUsVSGohC_X8QNk05ZycP6kQbPaPMT4aqQ01-8cU_NGf-if4-ImSPznmkC0MPkG0IZ8wygok9zX1AQt5dj9OMaStKU6Sm_efWiOuSfuOqc-mLfyzA9-Nm_8L_gKBDbIZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780777967</pqid></control><display><type>article</type><title>Artificial neural network for risk assessment in preterm neonates</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zernikow, B ; Holtmannspoetter, K ; Michel, E ; Pielemeier, W ; Hornschuh, F ; Westermann, A ; Hennecke, K H</creator><creatorcontrib>Zernikow, B ; Holtmannspoetter, K ; Michel, E ; Pielemeier, W ; Hornschuh, F ; Westermann, A ; Hennecke, K H</creatorcontrib><description>AIM To predict the individual neonatal mortality risk of preterm infants using an artificial neural network “trained” on admission data. METHODS A total of 890 preterm neonates (&lt;32 weeks gestational age and/or &lt;1500 g birthweight) were enrolled in our retrospective study. The neural network trained on infants born between 1990 and 1993. The predictive value was tested on infants born in the successive three years. RESULTS The artificial neural network performed significantly better than a logistic regression model (area under the receiver operator curve 0.95 vs 0.92). Survival was associated with high morbidity if the predicted mortality risk was greater than 0.50. There were no preterm infants with a predicted mortality risk of greater than 0.80. The mortality risks of two non-survivors with birthweights &gt;2000 g and severe congenital disease had largely been underestimated. CONCLUSION An artificial neural network trained on admission data can accurately predict the mortality risk for most preterm infants. However, the significant number of prediction failures renders it unsuitable for individual treatment decisions.</description><identifier>ISSN: 1359-2998</identifier><identifier>EISSN: 1468-2052</identifier><identifier>DOI: 10.1136/fn.79.2.F129</identifier><identifier>PMID: 9828740</identifier><language>eng</language><publisher>London: BMJ Publishing Group Ltd and Royal College of Paediatrics and Child Health</publisher><subject>Accuracy ; Area Under Curve ; artificial neural network ; Biological and medical sciences ; Birth weight ; Body temperature ; Computerized, statistical medical data processing and models in biomedicine ; Female ; Health risks ; Humans ; Infant Mortality ; Infant, Newborn ; Infant, Premature ; Infant, Very Low Birth Weight ; Infants ; Intensive care ; Logistic Models ; Logistics ; Male ; Medical management aid. Diagnosis aid ; Medical sciences ; Morbidity ; Mortality ; Mortality risk ; Neonates ; Neural Networks (Computer) ; Original ; Physiology ; prediction ; Quality ; Regression analysis ; Retrospective Studies ; Risk Assessment ; Sensitivity and Specificity ; Software ; Variables</subject><ispartof>Archives of disease in childhood. Fetal and neonatal edition, 1998-09, Vol.79 (2), p.F129-F134</ispartof><rights>Royal College of Paediatrics and Child Health</rights><rights>1998 INIST-CNRS</rights><rights>Copyright: 1998 Royal College of Paediatrics and Child Health</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b506t-93eddc665aa4a6338c9d3fbd858304de56340c6580ab95ef4b9a6b594db9381a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1720838/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1720838/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2374079$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9828740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zernikow, B</creatorcontrib><creatorcontrib>Holtmannspoetter, K</creatorcontrib><creatorcontrib>Michel, E</creatorcontrib><creatorcontrib>Pielemeier, W</creatorcontrib><creatorcontrib>Hornschuh, F</creatorcontrib><creatorcontrib>Westermann, A</creatorcontrib><creatorcontrib>Hennecke, K H</creatorcontrib><title>Artificial neural network for risk assessment in preterm neonates</title><title>Archives of disease in childhood. Fetal and neonatal edition</title><addtitle>Arch Dis Child Fetal Neonatal Ed</addtitle><description>AIM To predict the individual neonatal mortality risk of preterm infants using an artificial neural network “trained” on admission data. METHODS A total of 890 preterm neonates (&lt;32 weeks gestational age and/or &lt;1500 g birthweight) were enrolled in our retrospective study. The neural network trained on infants born between 1990 and 1993. The predictive value was tested on infants born in the successive three years. RESULTS The artificial neural network performed significantly better than a logistic regression model (area under the receiver operator curve 0.95 vs 0.92). Survival was associated with high morbidity if the predicted mortality risk was greater than 0.50. There were no preterm infants with a predicted mortality risk of greater than 0.80. The mortality risks of two non-survivors with birthweights &gt;2000 g and severe congenital disease had largely been underestimated. CONCLUSION An artificial neural network trained on admission data can accurately predict the mortality risk for most preterm infants. However, the significant number of prediction failures renders it unsuitable for individual treatment decisions.</description><subject>Accuracy</subject><subject>Area Under Curve</subject><subject>artificial neural network</subject><subject>Biological and medical sciences</subject><subject>Birth weight</subject><subject>Body temperature</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Female</subject><subject>Health risks</subject><subject>Humans</subject><subject>Infant Mortality</subject><subject>Infant, Newborn</subject><subject>Infant, Premature</subject><subject>Infant, Very Low Birth Weight</subject><subject>Infants</subject><subject>Intensive care</subject><subject>Logistic Models</subject><subject>Logistics</subject><subject>Male</subject><subject>Medical management aid. Diagnosis aid</subject><subject>Medical sciences</subject><subject>Morbidity</subject><subject>Mortality</subject><subject>Mortality risk</subject><subject>Neonates</subject><subject>Neural Networks (Computer)</subject><subject>Original</subject><subject>Physiology</subject><subject>prediction</subject><subject>Quality</subject><subject>Regression analysis</subject><subject>Retrospective Studies</subject><subject>Risk Assessment</subject><subject>Sensitivity and Specificity</subject><subject>Software</subject><subject>Variables</subject><issn>1359-2998</issn><issn>1468-2052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9kUuLFDEURoMo4zi6cysUKLqx2jwqr43QFI4PBt2Mugy3UommuyrVk1T5-Pem7aZRF67uhe_wcS4XoYcErwhh4oWPK6lXdHVJqL6FzkkjVE0xp7fLzriuqdbqLrqX8wZjTKSUZ-hMK6pkg8_Rep3m4IMNMFTRLen3mL9PaVv5KVUp5G0FObucRxfnKsRql9zs0liwKcLs8n10x8OQ3YPjvEAfL19dt2_qqw-v37brq7rjWMy1Zq7vrRAcoAHBmLK6Z77rFVcMN73jgjXYCq4wdJo733QaRMd103eaKQLsAr089O6WbnS9LTrF1uxSGCH9NBME83cSw1fzZfpmiKRYMVUKnh4L0nSzuDybMWTrhgHKKUs2EmMpOeEFfPwPuJmWFMtxpUsVSGohC_X8QNk05ZycP6kQbPaPMT4aqQ01-8cU_NGf-if4-ImSPznmkC0MPkG0IZ8wygok9zX1AQt5dj9OMaStKU6Sm_efWiOuSfuOqc-mLfyzA9-Nm_8L_gKBDbIZ</recordid><startdate>19980901</startdate><enddate>19980901</enddate><creator>Zernikow, B</creator><creator>Holtmannspoetter, K</creator><creator>Michel, E</creator><creator>Pielemeier, W</creator><creator>Hornschuh, F</creator><creator>Westermann, A</creator><creator>Hennecke, K H</creator><general>BMJ Publishing Group Ltd and Royal College of Paediatrics and Child Health</general><general>BMJ</general><general>BMJ Publishing Group LTD</general><general>BMJ Group</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19980901</creationdate><title>Artificial neural network for risk assessment in preterm neonates</title><author>Zernikow, B ; Holtmannspoetter, K ; Michel, E ; Pielemeier, W ; Hornschuh, F ; Westermann, A ; Hennecke, K H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b506t-93eddc665aa4a6338c9d3fbd858304de56340c6580ab95ef4b9a6b594db9381a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Accuracy</topic><topic>Area Under Curve</topic><topic>artificial neural network</topic><topic>Biological and medical sciences</topic><topic>Birth weight</topic><topic>Body temperature</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Female</topic><topic>Health risks</topic><topic>Humans</topic><topic>Infant Mortality</topic><topic>Infant, Newborn</topic><topic>Infant, Premature</topic><topic>Infant, Very Low Birth Weight</topic><topic>Infants</topic><topic>Intensive care</topic><topic>Logistic Models</topic><topic>Logistics</topic><topic>Male</topic><topic>Medical management aid. Diagnosis aid</topic><topic>Medical sciences</topic><topic>Morbidity</topic><topic>Mortality</topic><topic>Mortality risk</topic><topic>Neonates</topic><topic>Neural Networks (Computer)</topic><topic>Original</topic><topic>Physiology</topic><topic>prediction</topic><topic>Quality</topic><topic>Regression analysis</topic><topic>Retrospective Studies</topic><topic>Risk Assessment</topic><topic>Sensitivity and Specificity</topic><topic>Software</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zernikow, B</creatorcontrib><creatorcontrib>Holtmannspoetter, K</creatorcontrib><creatorcontrib>Michel, E</creatorcontrib><creatorcontrib>Pielemeier, W</creatorcontrib><creatorcontrib>Hornschuh, F</creatorcontrib><creatorcontrib>Westermann, A</creatorcontrib><creatorcontrib>Hennecke, K H</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Archives of disease in childhood. Fetal and neonatal edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zernikow, B</au><au>Holtmannspoetter, K</au><au>Michel, E</au><au>Pielemeier, W</au><au>Hornschuh, F</au><au>Westermann, A</au><au>Hennecke, K H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network for risk assessment in preterm neonates</atitle><jtitle>Archives of disease in childhood. Fetal and neonatal edition</jtitle><addtitle>Arch Dis Child Fetal Neonatal Ed</addtitle><date>1998-09-01</date><risdate>1998</risdate><volume>79</volume><issue>2</issue><spage>F129</spage><epage>F134</epage><pages>F129-F134</pages><issn>1359-2998</issn><eissn>1468-2052</eissn><abstract>AIM To predict the individual neonatal mortality risk of preterm infants using an artificial neural network “trained” on admission data. METHODS A total of 890 preterm neonates (&lt;32 weeks gestational age and/or &lt;1500 g birthweight) were enrolled in our retrospective study. The neural network trained on infants born between 1990 and 1993. The predictive value was tested on infants born in the successive three years. RESULTS The artificial neural network performed significantly better than a logistic regression model (area under the receiver operator curve 0.95 vs 0.92). Survival was associated with high morbidity if the predicted mortality risk was greater than 0.50. There were no preterm infants with a predicted mortality risk of greater than 0.80. The mortality risks of two non-survivors with birthweights &gt;2000 g and severe congenital disease had largely been underestimated. CONCLUSION An artificial neural network trained on admission data can accurately predict the mortality risk for most preterm infants. However, the significant number of prediction failures renders it unsuitable for individual treatment decisions.</abstract><cop>London</cop><pub>BMJ Publishing Group Ltd and Royal College of Paediatrics and Child Health</pub><pmid>9828740</pmid><doi>10.1136/fn.79.2.F129</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-2998
ispartof Archives of disease in childhood. Fetal and neonatal edition, 1998-09, Vol.79 (2), p.F129-F134
issn 1359-2998
1468-2052
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1720838
source MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Accuracy
Area Under Curve
artificial neural network
Biological and medical sciences
Birth weight
Body temperature
Computerized, statistical medical data processing and models in biomedicine
Female
Health risks
Humans
Infant Mortality
Infant, Newborn
Infant, Premature
Infant, Very Low Birth Weight
Infants
Intensive care
Logistic Models
Logistics
Male
Medical management aid. Diagnosis aid
Medical sciences
Morbidity
Mortality
Mortality risk
Neonates
Neural Networks (Computer)
Original
Physiology
prediction
Quality
Regression analysis
Retrospective Studies
Risk Assessment
Sensitivity and Specificity
Software
Variables
title Artificial neural network for risk assessment in preterm neonates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20for%20risk%20assessment%20in%20preterm%20neonates&rft.jtitle=Archives%20of%20disease%20in%20childhood.%20Fetal%20and%20neonatal%20edition&rft.au=Zernikow,%20B&rft.date=1998-09-01&rft.volume=79&rft.issue=2&rft.spage=F129&rft.epage=F134&rft.pages=F129-F134&rft.issn=1359-2998&rft.eissn=1468-2052&rft_id=info:doi/10.1136/fn.79.2.F129&rft_dat=%3Cproquest_pubme%3E4021324411%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1780777967&rft_id=info:pmid/9828740&rfr_iscdi=true