Enhanced Surfactant Adsorption via Polymer Depletion Forces: A Simple Model for Reversing Surfactant Inhibition in Acute Respiratory Distress Syndrome
Lung surfactant adsorption to an air-water interface is strongly inhibited by an energy barrier imposed by the competitive adsorption of albumin and other surface-active serum proteins that are present in the lung during acute respiratory distress syndrome. This reduction in surfactant adsorption re...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2007-01, Vol.92 (1), p.3-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 3 |
container_title | Biophysical journal |
container_volume | 92 |
creator | Stenger, Patrick C. Zasadzinski, Joseph A. |
description | Lung surfactant adsorption to an air-water interface is strongly inhibited by an energy barrier imposed by the competitive adsorption of albumin and other surface-active serum proteins that are present in the lung during acute respiratory distress syndrome. This reduction in surfactant adsorption results in an increased surface tension in the lung and an increase in the work of breathing. The reduction in surfactant adsorption is quantitatively described using a variation of the classical Smolukowski analysis of colloid stability. Albumin adsorbed to the interface induces an energy barrier to surfactant diffusion of order 5
k
B
T, leading to a reduction in adsorption equivalent to reducing the surfactant concentration by a factor of 100. Adding hydrophilic, nonadsorbing polymers such as polyethylene glycol to the subphase provides a depletion attraction between the surfactant aggregates and the interface that eliminates the energy barrier. Surfactant adsorption increases exponentially with polymer concentration as predicted by the simple Asakura and Oosawa model of depletion attraction. Depletion forces can likely be used to overcome barriers to adsorption at a variety of liquid-vapor and solid-liquid interfaces. |
doi_str_mv | 10.1529/biophysj.106.091157 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1697872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349507707993</els_id><sourcerecordid>68366809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-47f3047cd5a43588c01a7678d5d4ae9af490ef68e64067b473a9da9c9b04cc7b3</originalsourceid><addsrcrecordid>eNp9kc2O0zAUhSMEYsrAEyAhiwW7luvG8Q8SSNX8wEiDQBTWluPcTF0ldrCTSn0RnhfPtMDAgpWl4-8c3-tTFM8pLGi1VK9rF4bNPm0XFPgCFKWVeFDMaMWWcwDJHxYzAODzkqnqpHiS0haALiugj4sTKoCBkmJW_LjwG-MtNmQ9xdbY0fiRrJoU4jC64MnOGfI5dPseIznHocM79TJEi-kNWZG167NIPoYGO9KGSL7gDmNy_uZ-4JXfuNrdWZ0nKzuNmME0uGjGEPfk3KUxYkpkvfdNDD0-LR61pkv47HieFt8uL76efZhff3p_dba6nlsm2Thnoi2BCdtUhpWVlBaoEVzIpmqYQWVapgBbLpEz4KJmojSqMcqqGpi1oi5Pi3eH3GGqe2ws-jGaTg_R9SbudTBO_33j3UbfhJ2mXAkpljng1TEghu8TplH3LlnsOuMxTElzWXIuQWXw5T_gNkzR5-X0MjcHkgqWofIA2RhSitj-noSCvi1d_yo9C1wfSs-uF_eX-OM5tpyBtwcA81fuHEadrMPb1l1EO-omuP8-8BPrq8Ok</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215708174</pqid></control><display><type>article</type><title>Enhanced Surfactant Adsorption via Polymer Depletion Forces: A Simple Model for Reversing Surfactant Inhibition in Acute Respiratory Distress Syndrome</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Stenger, Patrick C. ; Zasadzinski, Joseph A.</creator><creatorcontrib>Stenger, Patrick C. ; Zasadzinski, Joseph A.</creatorcontrib><description>Lung surfactant adsorption to an air-water interface is strongly inhibited by an energy barrier imposed by the competitive adsorption of albumin and other surface-active serum proteins that are present in the lung during acute respiratory distress syndrome. This reduction in surfactant adsorption results in an increased surface tension in the lung and an increase in the work of breathing. The reduction in surfactant adsorption is quantitatively described using a variation of the classical Smolukowski analysis of colloid stability. Albumin adsorbed to the interface induces an energy barrier to surfactant diffusion of order 5
k
B
T, leading to a reduction in adsorption equivalent to reducing the surfactant concentration by a factor of 100. Adding hydrophilic, nonadsorbing polymers such as polyethylene glycol to the subphase provides a depletion attraction between the surfactant aggregates and the interface that eliminates the energy barrier. Surfactant adsorption increases exponentially with polymer concentration as predicted by the simple Asakura and Oosawa model of depletion attraction. Depletion forces can likely be used to overcome barriers to adsorption at a variety of liquid-vapor and solid-liquid interfaces.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.106.091157</identifier><identifier>PMID: 17040987</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adsorption ; Albumins - metabolism ; Animals ; Biophysical Theory and Modeling ; Cattle ; Colloids - chemistry ; Diffusion ; Entropy ; Kinetics ; Lung - drug effects ; Lung - metabolism ; Lungs ; Microscopy, Fluorescence ; Models, Statistical ; Polyethylene Glycols - chemistry ; Polyethylene Glycols - metabolism ; Polymers ; Polymers - chemistry ; Proteins ; Respiratory distress syndrome ; Respiratory Distress Syndrome, Adult - metabolism ; Surface-Active Agents - metabolism ; Surface-Active Agents - pharmacokinetics ; Surfactants</subject><ispartof>Biophysical journal, 2007-01, Vol.92 (1), p.3-9</ispartof><rights>2007 The Biophysical Society</rights><rights>Copyright Biophysical Society Jan 1, 2007</rights><rights>Copyright © 2007, Biophysical Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-47f3047cd5a43588c01a7678d5d4ae9af490ef68e64067b473a9da9c9b04cc7b3</citedby><cites>FETCH-LOGICAL-c484t-47f3047cd5a43588c01a7678d5d4ae9af490ef68e64067b473a9da9c9b04cc7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1697872/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.106.091157$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,3537,27905,27906,45976,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17040987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stenger, Patrick C.</creatorcontrib><creatorcontrib>Zasadzinski, Joseph A.</creatorcontrib><title>Enhanced Surfactant Adsorption via Polymer Depletion Forces: A Simple Model for Reversing Surfactant Inhibition in Acute Respiratory Distress Syndrome</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Lung surfactant adsorption to an air-water interface is strongly inhibited by an energy barrier imposed by the competitive adsorption of albumin and other surface-active serum proteins that are present in the lung during acute respiratory distress syndrome. This reduction in surfactant adsorption results in an increased surface tension in the lung and an increase in the work of breathing. The reduction in surfactant adsorption is quantitatively described using a variation of the classical Smolukowski analysis of colloid stability. Albumin adsorbed to the interface induces an energy barrier to surfactant diffusion of order 5
k
B
T, leading to a reduction in adsorption equivalent to reducing the surfactant concentration by a factor of 100. Adding hydrophilic, nonadsorbing polymers such as polyethylene glycol to the subphase provides a depletion attraction between the surfactant aggregates and the interface that eliminates the energy barrier. Surfactant adsorption increases exponentially with polymer concentration as predicted by the simple Asakura and Oosawa model of depletion attraction. Depletion forces can likely be used to overcome barriers to adsorption at a variety of liquid-vapor and solid-liquid interfaces.</description><subject>Adsorption</subject><subject>Albumins - metabolism</subject><subject>Animals</subject><subject>Biophysical Theory and Modeling</subject><subject>Cattle</subject><subject>Colloids - chemistry</subject><subject>Diffusion</subject><subject>Entropy</subject><subject>Kinetics</subject><subject>Lung - drug effects</subject><subject>Lung - metabolism</subject><subject>Lungs</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Statistical</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyethylene Glycols - metabolism</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Proteins</subject><subject>Respiratory distress syndrome</subject><subject>Respiratory Distress Syndrome, Adult - metabolism</subject><subject>Surface-Active Agents - metabolism</subject><subject>Surface-Active Agents - pharmacokinetics</subject><subject>Surfactants</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc2O0zAUhSMEYsrAEyAhiwW7luvG8Q8SSNX8wEiDQBTWluPcTF0ldrCTSn0RnhfPtMDAgpWl4-8c3-tTFM8pLGi1VK9rF4bNPm0XFPgCFKWVeFDMaMWWcwDJHxYzAODzkqnqpHiS0haALiugj4sTKoCBkmJW_LjwG-MtNmQ9xdbY0fiRrJoU4jC64MnOGfI5dPseIznHocM79TJEi-kNWZG167NIPoYGO9KGSL7gDmNy_uZ-4JXfuNrdWZ0nKzuNmME0uGjGEPfk3KUxYkpkvfdNDD0-LR61pkv47HieFt8uL76efZhff3p_dba6nlsm2Thnoi2BCdtUhpWVlBaoEVzIpmqYQWVapgBbLpEz4KJmojSqMcqqGpi1oi5Pi3eH3GGqe2ws-jGaTg_R9SbudTBO_33j3UbfhJ2mXAkpljng1TEghu8TplH3LlnsOuMxTElzWXIuQWXw5T_gNkzR5-X0MjcHkgqWofIA2RhSitj-noSCvi1d_yo9C1wfSs-uF_eX-OM5tpyBtwcA81fuHEadrMPb1l1EO-omuP8-8BPrq8Ok</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Stenger, Patrick C.</creator><creator>Zasadzinski, Joseph A.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070101</creationdate><title>Enhanced Surfactant Adsorption via Polymer Depletion Forces: A Simple Model for Reversing Surfactant Inhibition in Acute Respiratory Distress Syndrome</title><author>Stenger, Patrick C. ; Zasadzinski, Joseph A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-47f3047cd5a43588c01a7678d5d4ae9af490ef68e64067b473a9da9c9b04cc7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adsorption</topic><topic>Albumins - metabolism</topic><topic>Animals</topic><topic>Biophysical Theory and Modeling</topic><topic>Cattle</topic><topic>Colloids - chemistry</topic><topic>Diffusion</topic><topic>Entropy</topic><topic>Kinetics</topic><topic>Lung - drug effects</topic><topic>Lung - metabolism</topic><topic>Lungs</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Statistical</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyethylene Glycols - metabolism</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Proteins</topic><topic>Respiratory distress syndrome</topic><topic>Respiratory Distress Syndrome, Adult - metabolism</topic><topic>Surface-Active Agents - metabolism</topic><topic>Surface-Active Agents - pharmacokinetics</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stenger, Patrick C.</creatorcontrib><creatorcontrib>Zasadzinski, Joseph A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stenger, Patrick C.</au><au>Zasadzinski, Joseph A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Surfactant Adsorption via Polymer Depletion Forces: A Simple Model for Reversing Surfactant Inhibition in Acute Respiratory Distress Syndrome</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2007-01-01</date><risdate>2007</risdate><volume>92</volume><issue>1</issue><spage>3</spage><epage>9</epage><pages>3-9</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Lung surfactant adsorption to an air-water interface is strongly inhibited by an energy barrier imposed by the competitive adsorption of albumin and other surface-active serum proteins that are present in the lung during acute respiratory distress syndrome. This reduction in surfactant adsorption results in an increased surface tension in the lung and an increase in the work of breathing. The reduction in surfactant adsorption is quantitatively described using a variation of the classical Smolukowski analysis of colloid stability. Albumin adsorbed to the interface induces an energy barrier to surfactant diffusion of order 5
k
B
T, leading to a reduction in adsorption equivalent to reducing the surfactant concentration by a factor of 100. Adding hydrophilic, nonadsorbing polymers such as polyethylene glycol to the subphase provides a depletion attraction between the surfactant aggregates and the interface that eliminates the energy barrier. Surfactant adsorption increases exponentially with polymer concentration as predicted by the simple Asakura and Oosawa model of depletion attraction. Depletion forces can likely be used to overcome barriers to adsorption at a variety of liquid-vapor and solid-liquid interfaces.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17040987</pmid><doi>10.1529/biophysj.106.091157</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2007-01, Vol.92 (1), p.3-9 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1697872 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adsorption Albumins - metabolism Animals Biophysical Theory and Modeling Cattle Colloids - chemistry Diffusion Entropy Kinetics Lung - drug effects Lung - metabolism Lungs Microscopy, Fluorescence Models, Statistical Polyethylene Glycols - chemistry Polyethylene Glycols - metabolism Polymers Polymers - chemistry Proteins Respiratory distress syndrome Respiratory Distress Syndrome, Adult - metabolism Surface-Active Agents - metabolism Surface-Active Agents - pharmacokinetics Surfactants |
title | Enhanced Surfactant Adsorption via Polymer Depletion Forces: A Simple Model for Reversing Surfactant Inhibition in Acute Respiratory Distress Syndrome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Surfactant%20Adsorption%20via%20Polymer%20Depletion%20Forces:%20A%20Simple%20Model%20for%20Reversing%20Surfactant%20Inhibition%20in%20Acute%20Respiratory%20Distress%20Syndrome&rft.jtitle=Biophysical%20journal&rft.au=Stenger,%20Patrick%20C.&rft.date=2007-01-01&rft.volume=92&rft.issue=1&rft.spage=3&rft.epage=9&rft.pages=3-9&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.106.091157&rft_dat=%3Cproquest_pubme%3E68366809%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215708174&rft_id=info:pmid/17040987&rft_els_id=S0006349507707993&rfr_iscdi=true |