Pmr1, a Golgi Ca2+/Mn2+-ATPase, is a regulator of the target of rapamycin (TOR) signaling pathway in yeast

The rapamycin·FKBP12 complex inhibits target of rapamycin (TOR) kinase in TORC1. We screened the yeast nonessential gene deletion collection to identify mutants that conferred rapamycin resistance, and we identified PMR1, encoding the Golgi Ca2+/Mn2+-ATPase. Deleting PMR1 in two genetic backgrounds...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-11, Vol.103 (47), p.17840-17845
Hauptverfasser: Devasahayam, G, Ritz, D, Helliwell, S.B, Burke, D.J, Sturgill, T.W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17845
container_issue 47
container_start_page 17840
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Devasahayam, G
Ritz, D
Helliwell, S.B
Burke, D.J
Sturgill, T.W
description The rapamycin·FKBP12 complex inhibits target of rapamycin (TOR) kinase in TORC1. We screened the yeast nonessential gene deletion collection to identify mutants that conferred rapamycin resistance, and we identified PMR1, encoding the Golgi Ca2+/Mn2+-ATPase. Deleting PMR1 in two genetic backgrounds confers rapamycin resistance. Epistasis analyses show that Pmr1 functions upstream from Npr1 and Gln-3 in opposition to Lst8, a regulator of TOR. Npr1 kinase is largely cytoplasmic, and a portion localizes to the Golgi where amino acid permeases are modified and sorted. Nuclear translocation of Gln-3 and Gln-3 reporter activity in pmr1 cells are impaired, but expression of functional Gap1 in the plasma membrane of a pmr1 strain in response to nitrogen limitation is enhanced. These two phenotypes suggest up-regulation of Npr1 function in the absence of Pmr1. Together, our results establish that Pmr1-dependent Ca2+ and/or Mn2+ ion homeostasis is necessary for TOR signaling.
doi_str_mv 10.1073/pnas.0604303103
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1693834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30052550</jstor_id><sourcerecordid>30052550</sourcerecordid><originalsourceid>FETCH-LOGICAL-f326t-3d5ed876082e1d4b3838a4e0a686da29f89a7dbfc894742c5d5bf607ac22db4d3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEokNhzQqwWCCqNu31I46zQapGUJCKWsF0bd1JnIxHedV2aOff49EM5bFhZVvn0_G59yTJSwqnFHJ-NvboT0GC4MAp8EfJjEJBUykKeJzMAFieKsHEQfLM-zUAFJmCp8kBzeNNQj5L1tedoycEycXQNpbMkR2ffe3ZcXq-uEZvToj1UXSmmVoMgyNDTcLKkICuMWH7cjhityltT94vrr4dEW-bHlvbN2TEsLrDDYnSxqAPz5MnNbbevNifh8nNp4-L-ef08uriy_z8Mq05kyHlVWYqlUtQzNBKLLniCoUBlEpWyIpaFZhXy7pUhcgFK7MqW9ZxFiwZq5ai4ofJh53vOC07U5WmDw5bPTrbodvoAa3-W-ntSjfDD01lET8T0eDd3sANt5PxQXfWl6ZtsTfD5LVUNM-5ZBF8-w-4HiYXx_eaAeVKFopH6PWfcR5y_OogAmQPxDJ_y8C1yCOlBETk6D-Irqe2DeY-RPbVjl37WNgDzAEylmVbrzc7vcZBY-Os1zfft3EB4tIzyvhP8reyvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201386983</pqid></control><display><type>article</type><title>Pmr1, a Golgi Ca2+/Mn2+-ATPase, is a regulator of the target of rapamycin (TOR) signaling pathway in yeast</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Devasahayam, G ; Ritz, D ; Helliwell, S.B ; Burke, D.J ; Sturgill, T.W</creator><creatorcontrib>Devasahayam, G ; Ritz, D ; Helliwell, S.B ; Burke, D.J ; Sturgill, T.W</creatorcontrib><description>The rapamycin·FKBP12 complex inhibits target of rapamycin (TOR) kinase in TORC1. We screened the yeast nonessential gene deletion collection to identify mutants that conferred rapamycin resistance, and we identified PMR1, encoding the Golgi Ca2+/Mn2+-ATPase. Deleting PMR1 in two genetic backgrounds confers rapamycin resistance. Epistasis analyses show that Pmr1 functions upstream from Npr1 and Gln-3 in opposition to Lst8, a regulator of TOR. Npr1 kinase is largely cytoplasmic, and a portion localizes to the Golgi where amino acid permeases are modified and sorted. Nuclear translocation of Gln-3 and Gln-3 reporter activity in pmr1 cells are impaired, but expression of functional Gap1 in the plasma membrane of a pmr1 strain in response to nitrogen limitation is enhanced. These two phenotypes suggest up-regulation of Npr1 function in the absence of Pmr1. Together, our results establish that Pmr1-dependent Ca2+ and/or Mn2+ ion homeostasis is necessary for TOR signaling.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0604303103</identifier><identifier>PMID: 17095607</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>adenosinetriphosphatase ; Amino Acid Transport Systems - genetics ; Amino Acid Transport Systems - metabolism ; Antifungal Agents - metabolism ; Biological Sciences ; Ca/Mn-transpoting ATPase ; calcium ; Calcium-Transporting ATPases - genetics ; Calcium-Transporting ATPases - metabolism ; Cell growth ; Cell membranes ; Cell nucleus ; DNA ; drug resistance ; Epistasis, Genetic ; Gene expression regulation ; Gene Expression Regulation, Fungal ; Genes ; Genetics ; Golgi apparatus ; Golgi Apparatus - enzymology ; Kinases ; manganese ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; mutants ; Nitrogen ; Phenotypes ; Physiological regulation ; Plasmids ; PMR1 gene ; protein kinases ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Protein Serine-Threonine Kinases ; protein transport ; rapamycin resistance ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Signal Transduction - physiology ; Sirolimus - metabolism ; target of rapamycin kinase ; Transcription Factors - metabolism ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-11, Vol.103 (47), p.17840-17845</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 21, 2006</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/47.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30052550$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30052550$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27931,27932,53798,53800,58024,58257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17095607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Devasahayam, G</creatorcontrib><creatorcontrib>Ritz, D</creatorcontrib><creatorcontrib>Helliwell, S.B</creatorcontrib><creatorcontrib>Burke, D.J</creatorcontrib><creatorcontrib>Sturgill, T.W</creatorcontrib><title>Pmr1, a Golgi Ca2+/Mn2+-ATPase, is a regulator of the target of rapamycin (TOR) signaling pathway in yeast</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The rapamycin·FKBP12 complex inhibits target of rapamycin (TOR) kinase in TORC1. We screened the yeast nonessential gene deletion collection to identify mutants that conferred rapamycin resistance, and we identified PMR1, encoding the Golgi Ca2+/Mn2+-ATPase. Deleting PMR1 in two genetic backgrounds confers rapamycin resistance. Epistasis analyses show that Pmr1 functions upstream from Npr1 and Gln-3 in opposition to Lst8, a regulator of TOR. Npr1 kinase is largely cytoplasmic, and a portion localizes to the Golgi where amino acid permeases are modified and sorted. Nuclear translocation of Gln-3 and Gln-3 reporter activity in pmr1 cells are impaired, but expression of functional Gap1 in the plasma membrane of a pmr1 strain in response to nitrogen limitation is enhanced. These two phenotypes suggest up-regulation of Npr1 function in the absence of Pmr1. Together, our results establish that Pmr1-dependent Ca2+ and/or Mn2+ ion homeostasis is necessary for TOR signaling.</description><subject>adenosinetriphosphatase</subject><subject>Amino Acid Transport Systems - genetics</subject><subject>Amino Acid Transport Systems - metabolism</subject><subject>Antifungal Agents - metabolism</subject><subject>Biological Sciences</subject><subject>Ca/Mn-transpoting ATPase</subject><subject>calcium</subject><subject>Calcium-Transporting ATPases - genetics</subject><subject>Calcium-Transporting ATPases - metabolism</subject><subject>Cell growth</subject><subject>Cell membranes</subject><subject>Cell nucleus</subject><subject>DNA</subject><subject>drug resistance</subject><subject>Epistasis, Genetic</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genes</subject><subject>Genetics</subject><subject>Golgi apparatus</subject><subject>Golgi Apparatus - enzymology</subject><subject>Kinases</subject><subject>manganese</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>mutants</subject><subject>Nitrogen</subject><subject>Phenotypes</subject><subject>Physiological regulation</subject><subject>Plasmids</subject><subject>PMR1 gene</subject><subject>protein kinases</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Serine-Threonine Kinases</subject><subject>protein transport</subject><subject>rapamycin resistance</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Sirolimus - metabolism</subject><subject>target of rapamycin kinase</subject><subject>Transcription Factors - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhSMEokNhzQqwWCCqNu31I46zQapGUJCKWsF0bd1JnIxHedV2aOff49EM5bFhZVvn0_G59yTJSwqnFHJ-NvboT0GC4MAp8EfJjEJBUykKeJzMAFieKsHEQfLM-zUAFJmCp8kBzeNNQj5L1tedoycEycXQNpbMkR2ffe3ZcXq-uEZvToj1UXSmmVoMgyNDTcLKkICuMWH7cjhityltT94vrr4dEW-bHlvbN2TEsLrDDYnSxqAPz5MnNbbevNifh8nNp4-L-ef08uriy_z8Mq05kyHlVWYqlUtQzNBKLLniCoUBlEpWyIpaFZhXy7pUhcgFK7MqW9ZxFiwZq5ai4ofJh53vOC07U5WmDw5bPTrbodvoAa3-W-ntSjfDD01lET8T0eDd3sANt5PxQXfWl6ZtsTfD5LVUNM-5ZBF8-w-4HiYXx_eaAeVKFopH6PWfcR5y_OogAmQPxDJ_y8C1yCOlBETk6D-Irqe2DeY-RPbVjl37WNgDzAEylmVbrzc7vcZBY-Os1zfft3EB4tIzyvhP8reyvw</recordid><startdate>20061121</startdate><enddate>20061121</enddate><creator>Devasahayam, G</creator><creator>Ritz, D</creator><creator>Helliwell, S.B</creator><creator>Burke, D.J</creator><creator>Sturgill, T.W</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061121</creationdate><title>Pmr1, a Golgi Ca2+/Mn2+-ATPase, is a regulator of the target of rapamycin (TOR) signaling pathway in yeast</title><author>Devasahayam, G ; Ritz, D ; Helliwell, S.B ; Burke, D.J ; Sturgill, T.W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f326t-3d5ed876082e1d4b3838a4e0a686da29f89a7dbfc894742c5d5bf607ac22db4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>adenosinetriphosphatase</topic><topic>Amino Acid Transport Systems - genetics</topic><topic>Amino Acid Transport Systems - metabolism</topic><topic>Antifungal Agents - metabolism</topic><topic>Biological Sciences</topic><topic>Ca/Mn-transpoting ATPase</topic><topic>calcium</topic><topic>Calcium-Transporting ATPases - genetics</topic><topic>Calcium-Transporting ATPases - metabolism</topic><topic>Cell growth</topic><topic>Cell membranes</topic><topic>Cell nucleus</topic><topic>DNA</topic><topic>drug resistance</topic><topic>Epistasis, Genetic</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genes</topic><topic>Genetics</topic><topic>Golgi apparatus</topic><topic>Golgi Apparatus - enzymology</topic><topic>Kinases</topic><topic>manganese</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>mutants</topic><topic>Nitrogen</topic><topic>Phenotypes</topic><topic>Physiological regulation</topic><topic>Plasmids</topic><topic>PMR1 gene</topic><topic>protein kinases</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Serine-Threonine Kinases</topic><topic>protein transport</topic><topic>rapamycin resistance</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Sirolimus - metabolism</topic><topic>target of rapamycin kinase</topic><topic>Transcription Factors - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devasahayam, G</creatorcontrib><creatorcontrib>Ritz, D</creatorcontrib><creatorcontrib>Helliwell, S.B</creatorcontrib><creatorcontrib>Burke, D.J</creatorcontrib><creatorcontrib>Sturgill, T.W</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devasahayam, G</au><au>Ritz, D</au><au>Helliwell, S.B</au><au>Burke, D.J</au><au>Sturgill, T.W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pmr1, a Golgi Ca2+/Mn2+-ATPase, is a regulator of the target of rapamycin (TOR) signaling pathway in yeast</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-11-21</date><risdate>2006</risdate><volume>103</volume><issue>47</issue><spage>17840</spage><epage>17845</epage><pages>17840-17845</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The rapamycin·FKBP12 complex inhibits target of rapamycin (TOR) kinase in TORC1. We screened the yeast nonessential gene deletion collection to identify mutants that conferred rapamycin resistance, and we identified PMR1, encoding the Golgi Ca2+/Mn2+-ATPase. Deleting PMR1 in two genetic backgrounds confers rapamycin resistance. Epistasis analyses show that Pmr1 functions upstream from Npr1 and Gln-3 in opposition to Lst8, a regulator of TOR. Npr1 kinase is largely cytoplasmic, and a portion localizes to the Golgi where amino acid permeases are modified and sorted. Nuclear translocation of Gln-3 and Gln-3 reporter activity in pmr1 cells are impaired, but expression of functional Gap1 in the plasma membrane of a pmr1 strain in response to nitrogen limitation is enhanced. These two phenotypes suggest up-regulation of Npr1 function in the absence of Pmr1. Together, our results establish that Pmr1-dependent Ca2+ and/or Mn2+ ion homeostasis is necessary for TOR signaling.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17095607</pmid><doi>10.1073/pnas.0604303103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-11, Vol.103 (47), p.17840-17845
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1693834
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects adenosinetriphosphatase
Amino Acid Transport Systems - genetics
Amino Acid Transport Systems - metabolism
Antifungal Agents - metabolism
Biological Sciences
Ca/Mn-transpoting ATPase
calcium
Calcium-Transporting ATPases - genetics
Calcium-Transporting ATPases - metabolism
Cell growth
Cell membranes
Cell nucleus
DNA
drug resistance
Epistasis, Genetic
Gene expression regulation
Gene Expression Regulation, Fungal
Genes
Genetics
Golgi apparatus
Golgi Apparatus - enzymology
Kinases
manganese
Molecular Chaperones - genetics
Molecular Chaperones - metabolism
mutants
Nitrogen
Phenotypes
Physiological regulation
Plasmids
PMR1 gene
protein kinases
Protein Kinases - genetics
Protein Kinases - metabolism
Protein Serine-Threonine Kinases
protein transport
rapamycin resistance
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Signal Transduction - physiology
Sirolimus - metabolism
target of rapamycin kinase
Transcription Factors - metabolism
Yeast
Yeasts
title Pmr1, a Golgi Ca2+/Mn2+-ATPase, is a regulator of the target of rapamycin (TOR) signaling pathway in yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pmr1,%20a%20Golgi%20Ca2+/Mn2+-ATPase,%20is%20a%20regulator%20of%20the%20target%20of%20rapamycin%20(TOR)%20signaling%20pathway%20in%20yeast&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Devasahayam,%20G&rft.date=2006-11-21&rft.volume=103&rft.issue=47&rft.spage=17840&rft.epage=17845&rft.pages=17840-17845&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0604303103&rft_dat=%3Cjstor_pubme%3E30052550%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201386983&rft_id=info:pmid/17095607&rft_jstor_id=30052550&rfr_iscdi=true