Multiple states in river and lake ecosystems
Nonlinear models of ecosystem dynamics that incorporate positive feedbacks and multiple, internally reinforced states have considerable explanatory power. However, linear models may be adequate, particularly if ecosystem behaviour is primarily controlled by external processes. In lake ecosystems, in...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2002-05, Vol.357 (1421), p.635-645 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 645 |
---|---|
container_issue | 1421 |
container_start_page | 635 |
container_title | Philosophical transactions of the Royal Society of London. Series B. Biological sciences |
container_volume | 357 |
creator | Dent, C. Lisa Cumming, Graeme S. Carpenter, Stephen R. |
description | Nonlinear models of ecosystem dynamics that incorporate positive feedbacks and multiple, internally reinforced states have considerable explanatory power. However, linear models may be adequate, particularly if ecosystem behaviour is primarily controlled by external processes. In lake ecosystems, internal (mainly biotic) processes are thought to have major impacts on system behaviour, whereas in rivers, external (mainly physical) factors have traditionally been emphasized. We consider the hypothesis that models that exhibit multiple states are useful for understanding the behaviour of lake ecosystems, but not as useful for understanding stream ecosystems. Some of the best-known examples of multiple states come from lake ecosystems. We review some of these examples, and we also describe examples of multiple states in rivers. We conclude that the hypothesis is an oversimplification; the importance of physical forcing in rivers does not eliminate the possibility of internal feedbacks that create multiple states, although in rivers these feedbacks are likely to include physical as well as biotic processes. Nonlinear behaviour in aquatic ecosystems may be more common than current theory indicates. |
doi_str_mv | 10.1098/rstb.2001.0991 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1692979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3066775</jstor_id><sourcerecordid>3066775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c760t-212158f7004fb3c08fc958dc5fe5b75b8152968774e6d1de9e32dfe3ea8e06983</originalsourceid><addsrcrecordid>eNp9UkuP0zAQjhCILQtXTgjlxImUcRy_LqxgxUtaQNotiJuVJpOtu2lcbKdQfj1OUxUqxJ6s0XyPmW-cJI8JTAko-cL5MJ_mAGQKSpE7yYQUgmS5EnA3mYDieSYLyk-SB94vAUAxUdxPTkgOQrGcTZLnH_s2mHWLqQ9lQJ-aLnVmgy4tuzptyxtMsbJ-6wOu_MPkXlO2Hh_t39Pky9s3s_P32cXndx_OX11kleAQspzkhMlGABTNnFYgm0oxWVesQTYXbC4JyxWXQhTIa1KjQprXDVIsJQJXkp4mL0fddT9fYV1hF1zZ6rUzq9JttS2NPu50ZqGv7UYTruLqKgo82ws4-71HH_TK-ArbtuzQ9l4LIhlnUETgdARWznrvsDmYENBDwHoIWA8B6yHgSHj692h_4PtEI4COAGe3MSNbGQxbvbS962L5f1l_G-vyavaaKAUbyoQhRR5ZkhIQBSmo_mXWO7kBoCNAG-971DvYsc2_rk9G16UP1h12ocC5EMMq2dg28fo_D-3S3WguqGD6qyz0J1BX3y5noIcwYcQvzPXih3Goj7aJxTraDxPuZuN0sDi7lTLMW9kuxDsfEXXTt_FD1A39DUkr7gc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71856504</pqid></control><display><type>article</type><title>Multiple states in river and lake ecosystems</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Dent, C. Lisa ; Cumming, Graeme S. ; Carpenter, Stephen R.</creator><contributor>Levin, S. A. ; Solé, R. V. ; Solé, R. V. ; Levin, S. A.</contributor><creatorcontrib>Dent, C. Lisa ; Cumming, Graeme S. ; Carpenter, Stephen R. ; Levin, S. A. ; Solé, R. V. ; Solé, R. V. ; Levin, S. A.</creatorcontrib><description>Nonlinear models of ecosystem dynamics that incorporate positive feedbacks and multiple, internally reinforced states have considerable explanatory power. However, linear models may be adequate, particularly if ecosystem behaviour is primarily controlled by external processes. In lake ecosystems, internal (mainly biotic) processes are thought to have major impacts on system behaviour, whereas in rivers, external (mainly physical) factors have traditionally been emphasized. We consider the hypothesis that models that exhibit multiple states are useful for understanding the behaviour of lake ecosystems, but not as useful for understanding stream ecosystems. Some of the best-known examples of multiple states come from lake ecosystems. We review some of these examples, and we also describe examples of multiple states in rivers. We conclude that the hypothesis is an oversimplification; the importance of physical forcing in rivers does not eliminate the possibility of internal feedbacks that create multiple states, although in rivers these feedbacks are likely to include physical as well as biotic processes. Nonlinear behaviour in aquatic ecosystems may be more common than current theory indicates.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2001.0991</identifier><identifier>PMID: 12079525</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Biomass ; Daphnia ; Ecosystem ; Ecosystem models ; Eutrophication ; Fishes ; Fresh Water ; Freshwater ecosystems ; Freshwater fishes ; Lake ; Lakes ; Lentic systems ; Lotic systems ; Macrophytes ; Models, Biological ; Multiple States ; Nonlinear Dynamics ; Phosphorus ; Phytoplankton ; Plants ; River ; Salmon ; Streams ; Threshold</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2002-05, Vol.357 (1421), p.635-645</ispartof><rights>Copyright 2001-2002 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c760t-212158f7004fb3c08fc958dc5fe5b75b8152968774e6d1de9e32dfe3ea8e06983</citedby><cites>FETCH-LOGICAL-c760t-212158f7004fb3c08fc958dc5fe5b75b8152968774e6d1de9e32dfe3ea8e06983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3066775$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3066775$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12079525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Levin, S. A.</contributor><contributor>Solé, R. V.</contributor><contributor>Solé, R. V.</contributor><contributor>Levin, S. A.</contributor><creatorcontrib>Dent, C. Lisa</creatorcontrib><creatorcontrib>Cumming, Graeme S.</creatorcontrib><creatorcontrib>Carpenter, Stephen R.</creatorcontrib><title>Multiple states in river and lake ecosystems</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>Nonlinear models of ecosystem dynamics that incorporate positive feedbacks and multiple, internally reinforced states have considerable explanatory power. However, linear models may be adequate, particularly if ecosystem behaviour is primarily controlled by external processes. In lake ecosystems, internal (mainly biotic) processes are thought to have major impacts on system behaviour, whereas in rivers, external (mainly physical) factors have traditionally been emphasized. We consider the hypothesis that models that exhibit multiple states are useful for understanding the behaviour of lake ecosystems, but not as useful for understanding stream ecosystems. Some of the best-known examples of multiple states come from lake ecosystems. We review some of these examples, and we also describe examples of multiple states in rivers. We conclude that the hypothesis is an oversimplification; the importance of physical forcing in rivers does not eliminate the possibility of internal feedbacks that create multiple states, although in rivers these feedbacks are likely to include physical as well as biotic processes. Nonlinear behaviour in aquatic ecosystems may be more common than current theory indicates.</description><subject>Animals</subject><subject>Biomass</subject><subject>Daphnia</subject><subject>Ecosystem</subject><subject>Ecosystem models</subject><subject>Eutrophication</subject><subject>Fishes</subject><subject>Fresh Water</subject><subject>Freshwater ecosystems</subject><subject>Freshwater fishes</subject><subject>Lake</subject><subject>Lakes</subject><subject>Lentic systems</subject><subject>Lotic systems</subject><subject>Macrophytes</subject><subject>Models, Biological</subject><subject>Multiple States</subject><subject>Nonlinear Dynamics</subject><subject>Phosphorus</subject><subject>Phytoplankton</subject><subject>Plants</subject><subject>River</subject><subject>Salmon</subject><subject>Streams</subject><subject>Threshold</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UkuP0zAQjhCILQtXTgjlxImUcRy_LqxgxUtaQNotiJuVJpOtu2lcbKdQfj1OUxUqxJ6s0XyPmW-cJI8JTAko-cL5MJ_mAGQKSpE7yYQUgmS5EnA3mYDieSYLyk-SB94vAUAxUdxPTkgOQrGcTZLnH_s2mHWLqQ9lQJ-aLnVmgy4tuzptyxtMsbJ-6wOu_MPkXlO2Hh_t39Pky9s3s_P32cXndx_OX11kleAQspzkhMlGABTNnFYgm0oxWVesQTYXbC4JyxWXQhTIa1KjQprXDVIsJQJXkp4mL0fddT9fYV1hF1zZ6rUzq9JttS2NPu50ZqGv7UYTruLqKgo82ws4-71HH_TK-ArbtuzQ9l4LIhlnUETgdARWznrvsDmYENBDwHoIWA8B6yHgSHj692h_4PtEI4COAGe3MSNbGQxbvbS962L5f1l_G-vyavaaKAUbyoQhRR5ZkhIQBSmo_mXWO7kBoCNAG-971DvYsc2_rk9G16UP1h12ocC5EMMq2dg28fo_D-3S3WguqGD6qyz0J1BX3y5noIcwYcQvzPXih3Goj7aJxTraDxPuZuN0sDi7lTLMW9kuxDsfEXXTt_FD1A39DUkr7gc</recordid><startdate>20020529</startdate><enddate>20020529</enddate><creator>Dent, C. Lisa</creator><creator>Cumming, Graeme S.</creator><creator>Carpenter, Stephen R.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020529</creationdate><title>Multiple states in river and lake ecosystems</title><author>Dent, C. Lisa ; Cumming, Graeme S. ; Carpenter, Stephen R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c760t-212158f7004fb3c08fc958dc5fe5b75b8152968774e6d1de9e32dfe3ea8e06983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Biomass</topic><topic>Daphnia</topic><topic>Ecosystem</topic><topic>Ecosystem models</topic><topic>Eutrophication</topic><topic>Fishes</topic><topic>Fresh Water</topic><topic>Freshwater ecosystems</topic><topic>Freshwater fishes</topic><topic>Lake</topic><topic>Lakes</topic><topic>Lentic systems</topic><topic>Lotic systems</topic><topic>Macrophytes</topic><topic>Models, Biological</topic><topic>Multiple States</topic><topic>Nonlinear Dynamics</topic><topic>Phosphorus</topic><topic>Phytoplankton</topic><topic>Plants</topic><topic>River</topic><topic>Salmon</topic><topic>Streams</topic><topic>Threshold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dent, C. Lisa</creatorcontrib><creatorcontrib>Cumming, Graeme S.</creatorcontrib><creatorcontrib>Carpenter, Stephen R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dent, C. Lisa</au><au>Cumming, Graeme S.</au><au>Carpenter, Stephen R.</au><au>Levin, S. A.</au><au>Solé, R. V.</au><au>Solé, R. V.</au><au>Levin, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple states in river and lake ecosystems</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>2002-05-29</date><risdate>2002</risdate><volume>357</volume><issue>1421</issue><spage>635</spage><epage>645</epage><pages>635-645</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>Nonlinear models of ecosystem dynamics that incorporate positive feedbacks and multiple, internally reinforced states have considerable explanatory power. However, linear models may be adequate, particularly if ecosystem behaviour is primarily controlled by external processes. In lake ecosystems, internal (mainly biotic) processes are thought to have major impacts on system behaviour, whereas in rivers, external (mainly physical) factors have traditionally been emphasized. We consider the hypothesis that models that exhibit multiple states are useful for understanding the behaviour of lake ecosystems, but not as useful for understanding stream ecosystems. Some of the best-known examples of multiple states come from lake ecosystems. We review some of these examples, and we also describe examples of multiple states in rivers. We conclude that the hypothesis is an oversimplification; the importance of physical forcing in rivers does not eliminate the possibility of internal feedbacks that create multiple states, although in rivers these feedbacks are likely to include physical as well as biotic processes. Nonlinear behaviour in aquatic ecosystems may be more common than current theory indicates.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>12079525</pmid><doi>10.1098/rstb.2001.0991</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8436 |
ispartof | Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2002-05, Vol.357 (1421), p.635-645 |
issn | 0962-8436 1471-2970 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1692979 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central |
subjects | Animals Biomass Daphnia Ecosystem Ecosystem models Eutrophication Fishes Fresh Water Freshwater ecosystems Freshwater fishes Lake Lakes Lentic systems Lotic systems Macrophytes Models, Biological Multiple States Nonlinear Dynamics Phosphorus Phytoplankton Plants River Salmon Streams Threshold |
title | Multiple states in river and lake ecosystems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20states%20in%20river%20and%20lake%20ecosystems&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Dent,%20C.%20Lisa&rft.date=2002-05-29&rft.volume=357&rft.issue=1421&rft.spage=635&rft.epage=645&rft.pages=635-645&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2001.0991&rft_dat=%3Cjstor_pubme%3E3066775%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71856504&rft_id=info:pmid/12079525&rft_jstor_id=3066775&rfr_iscdi=true |