Multiple states in river and lake ecosystems

Nonlinear models of ecosystem dynamics that incorporate positive feedbacks and multiple, internally reinforced states have considerable explanatory power. However, linear models may be adequate, particularly if ecosystem behaviour is primarily controlled by external processes. In lake ecosystems, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2002-05, Vol.357 (1421), p.635-645
Hauptverfasser: Dent, C. Lisa, Cumming, Graeme S., Carpenter, Stephen R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 645
container_issue 1421
container_start_page 635
container_title Philosophical transactions of the Royal Society of London. Series B. Biological sciences
container_volume 357
creator Dent, C. Lisa
Cumming, Graeme S.
Carpenter, Stephen R.
description Nonlinear models of ecosystem dynamics that incorporate positive feedbacks and multiple, internally reinforced states have considerable explanatory power. However, linear models may be adequate, particularly if ecosystem behaviour is primarily controlled by external processes. In lake ecosystems, internal (mainly biotic) processes are thought to have major impacts on system behaviour, whereas in rivers, external (mainly physical) factors have traditionally been emphasized. We consider the hypothesis that models that exhibit multiple states are useful for understanding the behaviour of lake ecosystems, but not as useful for understanding stream ecosystems. Some of the best-known examples of multiple states come from lake ecosystems. We review some of these examples, and we also describe examples of multiple states in rivers. We conclude that the hypothesis is an oversimplification; the importance of physical forcing in rivers does not eliminate the possibility of internal feedbacks that create multiple states, although in rivers these feedbacks are likely to include physical as well as biotic processes. Nonlinear behaviour in aquatic ecosystems may be more common than current theory indicates.
doi_str_mv 10.1098/rstb.2001.0991
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1692979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3066775</jstor_id><sourcerecordid>3066775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c760t-212158f7004fb3c08fc958dc5fe5b75b8152968774e6d1de9e32dfe3ea8e06983</originalsourceid><addsrcrecordid>eNp9UkuP0zAQjhCILQtXTgjlxImUcRy_LqxgxUtaQNotiJuVJpOtu2lcbKdQfj1OUxUqxJ6s0XyPmW-cJI8JTAko-cL5MJ_mAGQKSpE7yYQUgmS5EnA3mYDieSYLyk-SB94vAUAxUdxPTkgOQrGcTZLnH_s2mHWLqQ9lQJ-aLnVmgy4tuzptyxtMsbJ-6wOu_MPkXlO2Hh_t39Pky9s3s_P32cXndx_OX11kleAQspzkhMlGABTNnFYgm0oxWVesQTYXbC4JyxWXQhTIa1KjQprXDVIsJQJXkp4mL0fddT9fYV1hF1zZ6rUzq9JttS2NPu50ZqGv7UYTruLqKgo82ws4-71HH_TK-ArbtuzQ9l4LIhlnUETgdARWznrvsDmYENBDwHoIWA8B6yHgSHj692h_4PtEI4COAGe3MSNbGQxbvbS962L5f1l_G-vyavaaKAUbyoQhRR5ZkhIQBSmo_mXWO7kBoCNAG-971DvYsc2_rk9G16UP1h12ocC5EMMq2dg28fo_D-3S3WguqGD6qyz0J1BX3y5noIcwYcQvzPXih3Goj7aJxTraDxPuZuN0sDi7lTLMW9kuxDsfEXXTt_FD1A39DUkr7gc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71856504</pqid></control><display><type>article</type><title>Multiple states in river and lake ecosystems</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Dent, C. Lisa ; Cumming, Graeme S. ; Carpenter, Stephen R.</creator><contributor>Levin, S. A. ; Solé, R. V. ; Solé, R. V. ; Levin, S. A.</contributor><creatorcontrib>Dent, C. Lisa ; Cumming, Graeme S. ; Carpenter, Stephen R. ; Levin, S. A. ; Solé, R. V. ; Solé, R. V. ; Levin, S. A.</creatorcontrib><description>Nonlinear models of ecosystem dynamics that incorporate positive feedbacks and multiple, internally reinforced states have considerable explanatory power. However, linear models may be adequate, particularly if ecosystem behaviour is primarily controlled by external processes. In lake ecosystems, internal (mainly biotic) processes are thought to have major impacts on system behaviour, whereas in rivers, external (mainly physical) factors have traditionally been emphasized. We consider the hypothesis that models that exhibit multiple states are useful for understanding the behaviour of lake ecosystems, but not as useful for understanding stream ecosystems. Some of the best-known examples of multiple states come from lake ecosystems. We review some of these examples, and we also describe examples of multiple states in rivers. We conclude that the hypothesis is an oversimplification; the importance of physical forcing in rivers does not eliminate the possibility of internal feedbacks that create multiple states, although in rivers these feedbacks are likely to include physical as well as biotic processes. Nonlinear behaviour in aquatic ecosystems may be more common than current theory indicates.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2001.0991</identifier><identifier>PMID: 12079525</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Biomass ; Daphnia ; Ecosystem ; Ecosystem models ; Eutrophication ; Fishes ; Fresh Water ; Freshwater ecosystems ; Freshwater fishes ; Lake ; Lakes ; Lentic systems ; Lotic systems ; Macrophytes ; Models, Biological ; Multiple States ; Nonlinear Dynamics ; Phosphorus ; Phytoplankton ; Plants ; River ; Salmon ; Streams ; Threshold</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2002-05, Vol.357 (1421), p.635-645</ispartof><rights>Copyright 2001-2002 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c760t-212158f7004fb3c08fc958dc5fe5b75b8152968774e6d1de9e32dfe3ea8e06983</citedby><cites>FETCH-LOGICAL-c760t-212158f7004fb3c08fc958dc5fe5b75b8152968774e6d1de9e32dfe3ea8e06983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3066775$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3066775$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12079525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Levin, S. A.</contributor><contributor>Solé, R. V.</contributor><contributor>Solé, R. V.</contributor><contributor>Levin, S. A.</contributor><creatorcontrib>Dent, C. Lisa</creatorcontrib><creatorcontrib>Cumming, Graeme S.</creatorcontrib><creatorcontrib>Carpenter, Stephen R.</creatorcontrib><title>Multiple states in river and lake ecosystems</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>Nonlinear models of ecosystem dynamics that incorporate positive feedbacks and multiple, internally reinforced states have considerable explanatory power. However, linear models may be adequate, particularly if ecosystem behaviour is primarily controlled by external processes. In lake ecosystems, internal (mainly biotic) processes are thought to have major impacts on system behaviour, whereas in rivers, external (mainly physical) factors have traditionally been emphasized. We consider the hypothesis that models that exhibit multiple states are useful for understanding the behaviour of lake ecosystems, but not as useful for understanding stream ecosystems. Some of the best-known examples of multiple states come from lake ecosystems. We review some of these examples, and we also describe examples of multiple states in rivers. We conclude that the hypothesis is an oversimplification; the importance of physical forcing in rivers does not eliminate the possibility of internal feedbacks that create multiple states, although in rivers these feedbacks are likely to include physical as well as biotic processes. Nonlinear behaviour in aquatic ecosystems may be more common than current theory indicates.</description><subject>Animals</subject><subject>Biomass</subject><subject>Daphnia</subject><subject>Ecosystem</subject><subject>Ecosystem models</subject><subject>Eutrophication</subject><subject>Fishes</subject><subject>Fresh Water</subject><subject>Freshwater ecosystems</subject><subject>Freshwater fishes</subject><subject>Lake</subject><subject>Lakes</subject><subject>Lentic systems</subject><subject>Lotic systems</subject><subject>Macrophytes</subject><subject>Models, Biological</subject><subject>Multiple States</subject><subject>Nonlinear Dynamics</subject><subject>Phosphorus</subject><subject>Phytoplankton</subject><subject>Plants</subject><subject>River</subject><subject>Salmon</subject><subject>Streams</subject><subject>Threshold</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UkuP0zAQjhCILQtXTgjlxImUcRy_LqxgxUtaQNotiJuVJpOtu2lcbKdQfj1OUxUqxJ6s0XyPmW-cJI8JTAko-cL5MJ_mAGQKSpE7yYQUgmS5EnA3mYDieSYLyk-SB94vAUAxUdxPTkgOQrGcTZLnH_s2mHWLqQ9lQJ-aLnVmgy4tuzptyxtMsbJ-6wOu_MPkXlO2Hh_t39Pky9s3s_P32cXndx_OX11kleAQspzkhMlGABTNnFYgm0oxWVesQTYXbC4JyxWXQhTIa1KjQprXDVIsJQJXkp4mL0fddT9fYV1hF1zZ6rUzq9JttS2NPu50ZqGv7UYTruLqKgo82ws4-71HH_TK-ArbtuzQ9l4LIhlnUETgdARWznrvsDmYENBDwHoIWA8B6yHgSHj692h_4PtEI4COAGe3MSNbGQxbvbS962L5f1l_G-vyavaaKAUbyoQhRR5ZkhIQBSmo_mXWO7kBoCNAG-971DvYsc2_rk9G16UP1h12ocC5EMMq2dg28fo_D-3S3WguqGD6qyz0J1BX3y5noIcwYcQvzPXih3Goj7aJxTraDxPuZuN0sDi7lTLMW9kuxDsfEXXTt_FD1A39DUkr7gc</recordid><startdate>20020529</startdate><enddate>20020529</enddate><creator>Dent, C. Lisa</creator><creator>Cumming, Graeme S.</creator><creator>Carpenter, Stephen R.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020529</creationdate><title>Multiple states in river and lake ecosystems</title><author>Dent, C. Lisa ; Cumming, Graeme S. ; Carpenter, Stephen R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c760t-212158f7004fb3c08fc958dc5fe5b75b8152968774e6d1de9e32dfe3ea8e06983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Biomass</topic><topic>Daphnia</topic><topic>Ecosystem</topic><topic>Ecosystem models</topic><topic>Eutrophication</topic><topic>Fishes</topic><topic>Fresh Water</topic><topic>Freshwater ecosystems</topic><topic>Freshwater fishes</topic><topic>Lake</topic><topic>Lakes</topic><topic>Lentic systems</topic><topic>Lotic systems</topic><topic>Macrophytes</topic><topic>Models, Biological</topic><topic>Multiple States</topic><topic>Nonlinear Dynamics</topic><topic>Phosphorus</topic><topic>Phytoplankton</topic><topic>Plants</topic><topic>River</topic><topic>Salmon</topic><topic>Streams</topic><topic>Threshold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dent, C. Lisa</creatorcontrib><creatorcontrib>Cumming, Graeme S.</creatorcontrib><creatorcontrib>Carpenter, Stephen R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dent, C. Lisa</au><au>Cumming, Graeme S.</au><au>Carpenter, Stephen R.</au><au>Levin, S. A.</au><au>Solé, R. V.</au><au>Solé, R. V.</au><au>Levin, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple states in river and lake ecosystems</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>2002-05-29</date><risdate>2002</risdate><volume>357</volume><issue>1421</issue><spage>635</spage><epage>645</epage><pages>635-645</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>Nonlinear models of ecosystem dynamics that incorporate positive feedbacks and multiple, internally reinforced states have considerable explanatory power. However, linear models may be adequate, particularly if ecosystem behaviour is primarily controlled by external processes. In lake ecosystems, internal (mainly biotic) processes are thought to have major impacts on system behaviour, whereas in rivers, external (mainly physical) factors have traditionally been emphasized. We consider the hypothesis that models that exhibit multiple states are useful for understanding the behaviour of lake ecosystems, but not as useful for understanding stream ecosystems. Some of the best-known examples of multiple states come from lake ecosystems. We review some of these examples, and we also describe examples of multiple states in rivers. We conclude that the hypothesis is an oversimplification; the importance of physical forcing in rivers does not eliminate the possibility of internal feedbacks that create multiple states, although in rivers these feedbacks are likely to include physical as well as biotic processes. Nonlinear behaviour in aquatic ecosystems may be more common than current theory indicates.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>12079525</pmid><doi>10.1098/rstb.2001.0991</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8436
ispartof Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2002-05, Vol.357 (1421), p.635-645
issn 0962-8436
1471-2970
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1692979
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central
subjects Animals
Biomass
Daphnia
Ecosystem
Ecosystem models
Eutrophication
Fishes
Fresh Water
Freshwater ecosystems
Freshwater fishes
Lake
Lakes
Lentic systems
Lotic systems
Macrophytes
Models, Biological
Multiple States
Nonlinear Dynamics
Phosphorus
Phytoplankton
Plants
River
Salmon
Streams
Threshold
title Multiple states in river and lake ecosystems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20states%20in%20river%20and%20lake%20ecosystems&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Dent,%20C.%20Lisa&rft.date=2002-05-29&rft.volume=357&rft.issue=1421&rft.spage=635&rft.epage=645&rft.pages=635-645&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2001.0991&rft_dat=%3Cjstor_pubme%3E3066775%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71856504&rft_id=info:pmid/12079525&rft_jstor_id=3066775&rfr_iscdi=true