Allosteric regulation of the light-harvesting system of photosystem II
Non-photochemical quenching of chlorophyll fluorescence (NPQ) is symptomatic of the regulation of energy dissipation by the light-harvesting antenna of photosystem II (PS II). The kinetics of NPQ in both leaves and isolated chloroplasts are determined by the transthylakoid ΔpH and the de-epoxidation...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2000-10, Vol.355 (1402), p.1361-1370 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1370 |
---|---|
container_issue | 1402 |
container_start_page | 1361 |
container_title | Philosophical transactions of the Royal Society of London. Series B. Biological sciences |
container_volume | 355 |
creator | Horton, Peter Ruban, Alexander V. Wentworth, Mark |
description | Non-photochemical quenching of chlorophyll fluorescence (NPQ) is symptomatic of the regulation of energy dissipation by the light-harvesting antenna of photosystem II (PS II). The kinetics of NPQ in both leaves and isolated chloroplasts are determined by the transthylakoid ΔpH and the de-epoxidation state of the xanthophyll cycle. In order to understand the mechanism and regulation of NPQ we have adopted the approaches commonly used in the study of enzyme-catalysed reactions. Steady-state measurements suggest allosteric regulation of NPQ, involving control by the xanthophyll cycle carotenoids of a protonationdependent conformational change that transforms the PS II antenna from an unquenched to a quenched state. The features of this model were confirmed using isolated light-harvesting proteins. Analysis of the rate of induction of quenching both in vitro and in vivo indicated a bimolecular second-order reaction; it is suggested that quenching arises from the reaction between two fluorescent domains, possibly within a single protein subunit. A universal model for this transition is presented based on simple thermodynamic principles governing reaction kinetics. |
doi_str_mv | 10.1098/rstb.2000.0698 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1692867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3066863</jstor_id><sourcerecordid>3066863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c791t-3a2ee2fbfe21da1163a99841c39a38f14cffd5a9f155e2cc9c7cece45d99f6f73</originalsourceid><addsrcrecordid>eNp9ks2P0zAQxSMEYpeFKyeEeuKW4rHz5QtiWVGotAIEC0i9jFzXblzSuNhOofz1OE1VqBB7iqz5zZt5b5Ikj4GMgfDqufNhPqaEkDEpeHUnOYeshJTyktxNzgkvaFplrDhLHni_ihTPy-x-cgYAtOQczpPJZdNYH5QzcuTUsmtEMLYdWT0KtRo1ZlmHtBZuq3ww7XLkd5Fd9-VNbYM9PKfTh8k9LRqvHh2-F8nnyeubq7fp9fs306vL61SWHELKBFWK6rlWFBYCoGCC8yoDybhglYZMar3IBdeQ54pKyWUplVRZvuBcF7pkF8mLQXfTzddqIVUbnGhw48xauB1aYfC00poal3aLUHBaFb3As4OAs9-76ArXxkvVNKJVtvNY0pwwqPIIjgdQOuu9U_o4BAj20WMfPfbRYx99bHj692p_8EPWEfAD4OwuZmSlUWGHK9u5Nj7x46ebV8A52bI8N5ARiqRiQEpa5RR_mc1-Xg9gBNB43yncY6d7_LsWu23qf808GbpWPlh39MJIUVQFi-V0KJt4_5_HsnDfMGZc5vilynBGZh_eTWZfsU_95cDX8Yf6YZzCk232w6VtQzza3t3eF7ACUHdNPO9CRwm4VcLuNlHkpJn9Bvo9-gQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72503185</pqid></control><display><type>article</type><title>Allosteric regulation of the light-harvesting system of photosystem II</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><creator>Horton, Peter ; Ruban, Alexander V. ; Wentworth, Mark</creator><contributor>Foyer, C. H. ; Osmond, C. B. ; Bock, G.</contributor><creatorcontrib>Horton, Peter ; Ruban, Alexander V. ; Wentworth, Mark ; Foyer, C. H. ; Osmond, C. B. ; Bock, G.</creatorcontrib><description>Non-photochemical quenching of chlorophyll fluorescence (NPQ) is symptomatic of the regulation of energy dissipation by the light-harvesting antenna of photosystem II (PS II). The kinetics of NPQ in both leaves and isolated chloroplasts are determined by the transthylakoid ΔpH and the de-epoxidation state of the xanthophyll cycle. In order to understand the mechanism and regulation of NPQ we have adopted the approaches commonly used in the study of enzyme-catalysed reactions. Steady-state measurements suggest allosteric regulation of NPQ, involving control by the xanthophyll cycle carotenoids of a protonationdependent conformational change that transforms the PS II antenna from an unquenched to a quenched state. The features of this model were confirmed using isolated light-harvesting proteins. Analysis of the rate of induction of quenching both in vitro and in vivo indicated a bimolecular second-order reaction; it is suggested that quenching arises from the reaction between two fluorescent domains, possibly within a single protein subunit. A universal model for this transition is presented based on simple thermodynamic principles governing reaction kinetics.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2000.0698</identifier><identifier>PMID: 11127991</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Allosteric Regulation ; Carotenoids ; Chlorophyll ; Chlorophylls ; Chloroplast ; Chloroplasts ; Chloroplasts - metabolism ; Energy Metabolism ; Fluorescence ; Kinetics ; Light ; Light Harvesting ; Light Harvesting and Dissipation Reactions Associated with Electron Transport ; Light-Harvesting Protein Complexes ; Models, Biological ; Non-Photochemical Quenching ; Photosynthesis ; Photosynthesis - physiology ; Photosynthetic Reaction Center Complex Proteins - metabolism ; Photosystem II ; Photosystem II Protein Complex ; Plant Leaves - metabolism ; Plant Proteins - metabolism ; Plants ; Thylakoids ; Xanthophyll Cycle ; Xanthophylls</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2000-10, Vol.355 (1402), p.1361-1370</ispartof><rights>Copyright 2000 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c791t-3a2ee2fbfe21da1163a99841c39a38f14cffd5a9f155e2cc9c7cece45d99f6f73</citedby><cites>FETCH-LOGICAL-c791t-3a2ee2fbfe21da1163a99841c39a38f14cffd5a9f155e2cc9c7cece45d99f6f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3066863$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3066863$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11127991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Foyer, C. H.</contributor><contributor>Osmond, C. B.</contributor><contributor>Bock, G.</contributor><creatorcontrib>Horton, Peter</creatorcontrib><creatorcontrib>Ruban, Alexander V.</creatorcontrib><creatorcontrib>Wentworth, Mark</creatorcontrib><title>Allosteric regulation of the light-harvesting system of photosystem II</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>Non-photochemical quenching of chlorophyll fluorescence (NPQ) is symptomatic of the regulation of energy dissipation by the light-harvesting antenna of photosystem II (PS II). The kinetics of NPQ in both leaves and isolated chloroplasts are determined by the transthylakoid ΔpH and the de-epoxidation state of the xanthophyll cycle. In order to understand the mechanism and regulation of NPQ we have adopted the approaches commonly used in the study of enzyme-catalysed reactions. Steady-state measurements suggest allosteric regulation of NPQ, involving control by the xanthophyll cycle carotenoids of a protonationdependent conformational change that transforms the PS II antenna from an unquenched to a quenched state. The features of this model were confirmed using isolated light-harvesting proteins. Analysis of the rate of induction of quenching both in vitro and in vivo indicated a bimolecular second-order reaction; it is suggested that quenching arises from the reaction between two fluorescent domains, possibly within a single protein subunit. A universal model for this transition is presented based on simple thermodynamic principles governing reaction kinetics.</description><subject>Allosteric Regulation</subject><subject>Carotenoids</subject><subject>Chlorophyll</subject><subject>Chlorophylls</subject><subject>Chloroplast</subject><subject>Chloroplasts</subject><subject>Chloroplasts - metabolism</subject><subject>Energy Metabolism</subject><subject>Fluorescence</subject><subject>Kinetics</subject><subject>Light</subject><subject>Light Harvesting</subject><subject>Light Harvesting and Dissipation Reactions Associated with Electron Transport</subject><subject>Light-Harvesting Protein Complexes</subject><subject>Models, Biological</subject><subject>Non-Photochemical Quenching</subject><subject>Photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>Photosynthetic Reaction Center Complex Proteins - metabolism</subject><subject>Photosystem II</subject><subject>Photosystem II Protein Complex</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Thylakoids</subject><subject>Xanthophyll Cycle</subject><subject>Xanthophylls</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks2P0zAQxSMEYpeFKyeEeuKW4rHz5QtiWVGotAIEC0i9jFzXblzSuNhOofz1OE1VqBB7iqz5zZt5b5Ikj4GMgfDqufNhPqaEkDEpeHUnOYeshJTyktxNzgkvaFplrDhLHni_ihTPy-x-cgYAtOQczpPJZdNYH5QzcuTUsmtEMLYdWT0KtRo1ZlmHtBZuq3ww7XLkd5Fd9-VNbYM9PKfTh8k9LRqvHh2-F8nnyeubq7fp9fs306vL61SWHELKBFWK6rlWFBYCoGCC8yoDybhglYZMar3IBdeQ54pKyWUplVRZvuBcF7pkF8mLQXfTzddqIVUbnGhw48xauB1aYfC00poal3aLUHBaFb3As4OAs9-76ArXxkvVNKJVtvNY0pwwqPIIjgdQOuu9U_o4BAj20WMfPfbRYx99bHj692p_8EPWEfAD4OwuZmSlUWGHK9u5Nj7x46ebV8A52bI8N5ARiqRiQEpa5RR_mc1-Xg9gBNB43yncY6d7_LsWu23qf808GbpWPlh39MJIUVQFi-V0KJt4_5_HsnDfMGZc5vilynBGZh_eTWZfsU_95cDX8Yf6YZzCk232w6VtQzza3t3eF7ACUHdNPO9CRwm4VcLuNlHkpJn9Bvo9-gQ</recordid><startdate>20001029</startdate><enddate>20001029</enddate><creator>Horton, Peter</creator><creator>Ruban, Alexander V.</creator><creator>Wentworth, Mark</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20001029</creationdate><title>Allosteric regulation of the light-harvesting system of photosystem II</title><author>Horton, Peter ; Ruban, Alexander V. ; Wentworth, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c791t-3a2ee2fbfe21da1163a99841c39a38f14cffd5a9f155e2cc9c7cece45d99f6f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Allosteric Regulation</topic><topic>Carotenoids</topic><topic>Chlorophyll</topic><topic>Chlorophylls</topic><topic>Chloroplast</topic><topic>Chloroplasts</topic><topic>Chloroplasts - metabolism</topic><topic>Energy Metabolism</topic><topic>Fluorescence</topic><topic>Kinetics</topic><topic>Light</topic><topic>Light Harvesting</topic><topic>Light Harvesting and Dissipation Reactions Associated with Electron Transport</topic><topic>Light-Harvesting Protein Complexes</topic><topic>Models, Biological</topic><topic>Non-Photochemical Quenching</topic><topic>Photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>Photosynthetic Reaction Center Complex Proteins - metabolism</topic><topic>Photosystem II</topic><topic>Photosystem II Protein Complex</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Thylakoids</topic><topic>Xanthophyll Cycle</topic><topic>Xanthophylls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horton, Peter</creatorcontrib><creatorcontrib>Ruban, Alexander V.</creatorcontrib><creatorcontrib>Wentworth, Mark</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horton, Peter</au><au>Ruban, Alexander V.</au><au>Wentworth, Mark</au><au>Foyer, C. H.</au><au>Osmond, C. B.</au><au>Bock, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allosteric regulation of the light-harvesting system of photosystem II</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>2000-10-29</date><risdate>2000</risdate><volume>355</volume><issue>1402</issue><spage>1361</spage><epage>1370</epage><pages>1361-1370</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>Non-photochemical quenching of chlorophyll fluorescence (NPQ) is symptomatic of the regulation of energy dissipation by the light-harvesting antenna of photosystem II (PS II). The kinetics of NPQ in both leaves and isolated chloroplasts are determined by the transthylakoid ΔpH and the de-epoxidation state of the xanthophyll cycle. In order to understand the mechanism and regulation of NPQ we have adopted the approaches commonly used in the study of enzyme-catalysed reactions. Steady-state measurements suggest allosteric regulation of NPQ, involving control by the xanthophyll cycle carotenoids of a protonationdependent conformational change that transforms the PS II antenna from an unquenched to a quenched state. The features of this model were confirmed using isolated light-harvesting proteins. Analysis of the rate of induction of quenching both in vitro and in vivo indicated a bimolecular second-order reaction; it is suggested that quenching arises from the reaction between two fluorescent domains, possibly within a single protein subunit. A universal model for this transition is presented based on simple thermodynamic principles governing reaction kinetics.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>11127991</pmid><doi>10.1098/rstb.2000.0698</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8436 |
ispartof | Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2000-10, Vol.355 (1402), p.1361-1370 |
issn | 0962-8436 1471-2970 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1692867 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central |
subjects | Allosteric Regulation Carotenoids Chlorophyll Chlorophylls Chloroplast Chloroplasts Chloroplasts - metabolism Energy Metabolism Fluorescence Kinetics Light Light Harvesting Light Harvesting and Dissipation Reactions Associated with Electron Transport Light-Harvesting Protein Complexes Models, Biological Non-Photochemical Quenching Photosynthesis Photosynthesis - physiology Photosynthetic Reaction Center Complex Proteins - metabolism Photosystem II Photosystem II Protein Complex Plant Leaves - metabolism Plant Proteins - metabolism Plants Thylakoids Xanthophyll Cycle Xanthophylls |
title | Allosteric regulation of the light-harvesting system of photosystem II |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allosteric%20regulation%20of%20the%20light-harvesting%20system%20of%20photosystem%20II&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Horton,%20Peter&rft.date=2000-10-29&rft.volume=355&rft.issue=1402&rft.spage=1361&rft.epage=1370&rft.pages=1361-1370&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2000.0698&rft_dat=%3Cjstor_pubme%3E3066863%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72503185&rft_id=info:pmid/11127991&rft_jstor_id=3066863&rfr_iscdi=true |