Allosteric regulation of the light-harvesting system of photosystem II
Non-photochemical quenching of chlorophyll fluorescence (NPQ) is symptomatic of the regulation of energy dissipation by the light-harvesting antenna of photosystem II (PS II). The kinetics of NPQ in both leaves and isolated chloroplasts are determined by the transthylakoid ΔpH and the de-epoxidation...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2000-10, Vol.355 (1402), p.1361-1370 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Non-photochemical quenching of chlorophyll fluorescence (NPQ) is symptomatic of the regulation of energy dissipation by the light-harvesting antenna of photosystem II (PS II). The kinetics of NPQ in both leaves and isolated chloroplasts are determined by the transthylakoid ΔpH and the de-epoxidation state of the xanthophyll cycle. In order to understand the mechanism and regulation of NPQ we have adopted the approaches commonly used in the study of enzyme-catalysed reactions. Steady-state measurements suggest allosteric regulation of NPQ, involving control by the xanthophyll cycle carotenoids of a protonationdependent conformational change that transforms the PS II antenna from an unquenched to a quenched state. The features of this model were confirmed using isolated light-harvesting proteins. Analysis of the rate of induction of quenching both in vitro and in vivo indicated a bimolecular second-order reaction; it is suggested that quenching arises from the reaction between two fluorescent domains, possibly within a single protein subunit. A universal model for this transition is presented based on simple thermodynamic principles governing reaction kinetics. |
---|---|
ISSN: | 0962-8436 1471-2970 |
DOI: | 10.1098/rstb.2000.0698 |