Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H⁺-ATPase genes from the mycorrhizal fungus Glomus mosseae

The establishment of the arbuscular mycorrhizal symbiosis results in a modification of the gene expression pattern in both plant and fungus to accomplish the morphological and physiological changes necessary for the bidirectional transfer of nutrients between symbionts. H(+)-ATPase enzymes play a ke...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2003-07, Vol.132 (3), p.1540-1549
Hauptverfasser: Requena, N, Breuninger, M, Franken, P, Ocon, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1549
container_issue 3
container_start_page 1540
container_title Plant physiology (Bethesda)
container_volume 132
creator Requena, N
Breuninger, M
Franken, P
Ocon, A
description The establishment of the arbuscular mycorrhizal symbiosis results in a modification of the gene expression pattern in both plant and fungus to accomplish the morphological and physiological changes necessary for the bidirectional transfer of nutrients between symbionts. H(+)-ATPase enzymes play a key role establishing the electrochemical gradient required for the transfer of nutrients across the plasma membrane in both fungi and plants. Molecular analysis of the genetic changes in arbuscular mycorrhizal fungi during symbiosis allowed us to isolate a fungal cDNA clone encoding a H(+)-ATPase, GmPMA1, from Glomus mosseae (BEG12). Despite the high conservation of the catalytic domain from H(+)-ATPases, detailed analyses showed that GmPMA1 was strongly related only to a previously identified G. mosseae ATPase gene, GmHA5, and not to the other four ATPase genes known from this fungus. A developmentally regulated expression pattern could be shown for both genes, GmPMA1 and GmHA5. GmPMA1 was highly expressed during asymbiotic development, and its expression did not change when entering into symbiosis, whereas the GmHA5 transcript was induced upon plant recognition at the appressorium stage. Both genes maintained high levels of expression during intraradical development, but their expression was reduced in the extraradical mycelium. Phosphate, a key nutrient to the symbiosis, also induced the expression of GmHA5 during asymbiotic growth, whereas sucrose had a negative effect. Our results indicate that different fungal H(+)-ATPases isoforms might be recruited at different developmental stages possibly responding to the different requirements of the life in symbiosis.
doi_str_mv 10.1104/pp.102.019042
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_167092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>12857834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-677d0a4e2335d2426a1bfaa4f820ddfaea068759120dee9306ec8a17ad45f5583</originalsourceid><addsrcrecordid>eNpVkc9u1DAQhy0EokvhyBV84dYsY8fOnwOHqiotUiWQ2p6j2WScDYpjy06A7Y134Gl4HJ4El11ROM3Y_r6xND_GXgpYCwHqrfdrAXINogYlH7GV0LnMpFbVY7YCSD1UVX3EnsX4GQBELtRTdiRkpcsqVyv243pnN4Obh5bHGeclnnC_ddFvcaYTjlPH49IGF4kH6pcx3fJ5S5y--UAxDm7izvD5q-N-xGiRW7KbgBPxy1_ff2anN58wqT1NFLkJzv6R7a51IWyHOxy5WaZ-ifxidDYV62IkpOfsicEx0otDPWa3789vzi6zq48XH85Or7JWlfmcFWXZASqSea47qWSBYmMQlakkdJ1BQiiqUtciHYnqHApqKxQldkobrav8mL3bz_XLxlLX0jQHHBsfBoth1zgcmv9fpmHb9O5LI4oSapn8bO_fbygGMn9VAc19Oo33qZXNPp3Ev_r3vwf6EEcC3hwAjC2OJm2yHeIDp2otFBSJe73nDLoG-5CY22uZ0gUBFUgt8t970qaW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H⁺-ATPase genes from the mycorrhizal fungus Glomus mosseae</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Requena, N ; Breuninger, M ; Franken, P ; Ocon, A</creator><creatorcontrib>Requena, N ; Breuninger, M ; Franken, P ; Ocon, A</creatorcontrib><description>The establishment of the arbuscular mycorrhizal symbiosis results in a modification of the gene expression pattern in both plant and fungus to accomplish the morphological and physiological changes necessary for the bidirectional transfer of nutrients between symbionts. H(+)-ATPase enzymes play a key role establishing the electrochemical gradient required for the transfer of nutrients across the plasma membrane in both fungi and plants. Molecular analysis of the genetic changes in arbuscular mycorrhizal fungi during symbiosis allowed us to isolate a fungal cDNA clone encoding a H(+)-ATPase, GmPMA1, from Glomus mosseae (BEG12). Despite the high conservation of the catalytic domain from H(+)-ATPases, detailed analyses showed that GmPMA1 was strongly related only to a previously identified G. mosseae ATPase gene, GmHA5, and not to the other four ATPase genes known from this fungus. A developmentally regulated expression pattern could be shown for both genes, GmPMA1 and GmHA5. GmPMA1 was highly expressed during asymbiotic development, and its expression did not change when entering into symbiosis, whereas the GmHA5 transcript was induced upon plant recognition at the appressorium stage. Both genes maintained high levels of expression during intraradical development, but their expression was reduced in the extraradical mycelium. Phosphate, a key nutrient to the symbiosis, also induced the expression of GmHA5 during asymbiotic growth, whereas sucrose had a negative effect. Our results indicate that different fungal H(+)-ATPases isoforms might be recruited at different developmental stages possibly responding to the different requirements of the life in symbiosis.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.102.019042</identifier><identifier>PMID: 12857834</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>Amino Acid Sequence ; amino acid sequences ; Biological and medical sciences ; Cell Membrane - enzymology ; Conserved Sequence ; Fundamental and applied biological sciences. Psychology ; fungal proteins ; Fungi - cytology ; Fungi - drug effects ; Fungi - enzymology ; Fungi - genetics ; gene expression regulation ; Gene Expression Regulation, Developmental - drug effects ; Gene Expression Regulation, Fungal - drug effects ; Genes, Fungal - genetics ; Glomus mosseae ; GmHA5 gene ; GmPMA1 gene ; H-transporting ATPase ; host plants ; membrane proteins ; Molecular Sequence Data ; mycorrhizal fungi ; nucleotide sequences ; Parasitism and symbiosis ; parsley ; Petroselinum - microbiology ; Petroselinum crispum ; phosphates ; Phosphates - pharmacology ; Phylogeny ; Plant physiology and development ; plasma membrane ; Proton-Translocating ATPases - chemistry ; Proton-Translocating ATPases - genetics ; Sequence Alignment ; sucrose ; Sucrose - pharmacology ; Symbiosis ; Symbiosis - genetics ; vesicular arbuscular mycorrhizae</subject><ispartof>Plant physiology (Bethesda), 2003-07, Vol.132 (3), p.1540-1549</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright © 2003, The American Society for Plant Biologists 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-677d0a4e2335d2426a1bfaa4f820ddfaea068759120dee9306ec8a17ad45f5583</citedby><cites>FETCH-LOGICAL-c473t-677d0a4e2335d2426a1bfaa4f820ddfaea068759120dee9306ec8a17ad45f5583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14951406$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12857834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Requena, N</creatorcontrib><creatorcontrib>Breuninger, M</creatorcontrib><creatorcontrib>Franken, P</creatorcontrib><creatorcontrib>Ocon, A</creatorcontrib><title>Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H⁺-ATPase genes from the mycorrhizal fungus Glomus mosseae</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The establishment of the arbuscular mycorrhizal symbiosis results in a modification of the gene expression pattern in both plant and fungus to accomplish the morphological and physiological changes necessary for the bidirectional transfer of nutrients between symbionts. H(+)-ATPase enzymes play a key role establishing the electrochemical gradient required for the transfer of nutrients across the plasma membrane in both fungi and plants. Molecular analysis of the genetic changes in arbuscular mycorrhizal fungi during symbiosis allowed us to isolate a fungal cDNA clone encoding a H(+)-ATPase, GmPMA1, from Glomus mosseae (BEG12). Despite the high conservation of the catalytic domain from H(+)-ATPases, detailed analyses showed that GmPMA1 was strongly related only to a previously identified G. mosseae ATPase gene, GmHA5, and not to the other four ATPase genes known from this fungus. A developmentally regulated expression pattern could be shown for both genes, GmPMA1 and GmHA5. GmPMA1 was highly expressed during asymbiotic development, and its expression did not change when entering into symbiosis, whereas the GmHA5 transcript was induced upon plant recognition at the appressorium stage. Both genes maintained high levels of expression during intraradical development, but their expression was reduced in the extraradical mycelium. Phosphate, a key nutrient to the symbiosis, also induced the expression of GmHA5 during asymbiotic growth, whereas sucrose had a negative effect. Our results indicate that different fungal H(+)-ATPases isoforms might be recruited at different developmental stages possibly responding to the different requirements of the life in symbiosis.</description><subject>Amino Acid Sequence</subject><subject>amino acid sequences</subject><subject>Biological and medical sciences</subject><subject>Cell Membrane - enzymology</subject><subject>Conserved Sequence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>fungal proteins</subject><subject>Fungi - cytology</subject><subject>Fungi - drug effects</subject><subject>Fungi - enzymology</subject><subject>Fungi - genetics</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Developmental - drug effects</subject><subject>Gene Expression Regulation, Fungal - drug effects</subject><subject>Genes, Fungal - genetics</subject><subject>Glomus mosseae</subject><subject>GmHA5 gene</subject><subject>GmPMA1 gene</subject><subject>H-transporting ATPase</subject><subject>host plants</subject><subject>membrane proteins</subject><subject>Molecular Sequence Data</subject><subject>mycorrhizal fungi</subject><subject>nucleotide sequences</subject><subject>Parasitism and symbiosis</subject><subject>parsley</subject><subject>Petroselinum - microbiology</subject><subject>Petroselinum crispum</subject><subject>phosphates</subject><subject>Phosphates - pharmacology</subject><subject>Phylogeny</subject><subject>Plant physiology and development</subject><subject>plasma membrane</subject><subject>Proton-Translocating ATPases - chemistry</subject><subject>Proton-Translocating ATPases - genetics</subject><subject>Sequence Alignment</subject><subject>sucrose</subject><subject>Sucrose - pharmacology</subject><subject>Symbiosis</subject><subject>Symbiosis - genetics</subject><subject>vesicular arbuscular mycorrhizae</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc9u1DAQhy0EokvhyBV84dYsY8fOnwOHqiotUiWQ2p6j2WScDYpjy06A7Y134Gl4HJ4El11ROM3Y_r6xND_GXgpYCwHqrfdrAXINogYlH7GV0LnMpFbVY7YCSD1UVX3EnsX4GQBELtRTdiRkpcsqVyv243pnN4Obh5bHGeclnnC_ddFvcaYTjlPH49IGF4kH6pcx3fJ5S5y--UAxDm7izvD5q-N-xGiRW7KbgBPxy1_ff2anN58wqT1NFLkJzv6R7a51IWyHOxy5WaZ-ifxidDYV62IkpOfsicEx0otDPWa3789vzi6zq48XH85Or7JWlfmcFWXZASqSea47qWSBYmMQlakkdJ1BQiiqUtciHYnqHApqKxQldkobrav8mL3bz_XLxlLX0jQHHBsfBoth1zgcmv9fpmHb9O5LI4oSapn8bO_fbygGMn9VAc19Oo33qZXNPp3Ev_r3vwf6EEcC3hwAjC2OJm2yHeIDp2otFBSJe73nDLoG-5CY22uZ0gUBFUgt8t970qaW</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Requena, N</creator><creator>Breuninger, M</creator><creator>Franken, P</creator><creator>Ocon, A</creator><general>American Society of Plant Physiologists</general><general>The American Society for Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20030701</creationdate><title>Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H⁺-ATPase genes from the mycorrhizal fungus Glomus mosseae</title><author>Requena, N ; Breuninger, M ; Franken, P ; Ocon, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-677d0a4e2335d2426a1bfaa4f820ddfaea068759120dee9306ec8a17ad45f5583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Sequence</topic><topic>amino acid sequences</topic><topic>Biological and medical sciences</topic><topic>Cell Membrane - enzymology</topic><topic>Conserved Sequence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>fungal proteins</topic><topic>Fungi - cytology</topic><topic>Fungi - drug effects</topic><topic>Fungi - enzymology</topic><topic>Fungi - genetics</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Developmental - drug effects</topic><topic>Gene Expression Regulation, Fungal - drug effects</topic><topic>Genes, Fungal - genetics</topic><topic>Glomus mosseae</topic><topic>GmHA5 gene</topic><topic>GmPMA1 gene</topic><topic>H-transporting ATPase</topic><topic>host plants</topic><topic>membrane proteins</topic><topic>Molecular Sequence Data</topic><topic>mycorrhizal fungi</topic><topic>nucleotide sequences</topic><topic>Parasitism and symbiosis</topic><topic>parsley</topic><topic>Petroselinum - microbiology</topic><topic>Petroselinum crispum</topic><topic>phosphates</topic><topic>Phosphates - pharmacology</topic><topic>Phylogeny</topic><topic>Plant physiology and development</topic><topic>plasma membrane</topic><topic>Proton-Translocating ATPases - chemistry</topic><topic>Proton-Translocating ATPases - genetics</topic><topic>Sequence Alignment</topic><topic>sucrose</topic><topic>Sucrose - pharmacology</topic><topic>Symbiosis</topic><topic>Symbiosis - genetics</topic><topic>vesicular arbuscular mycorrhizae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Requena, N</creatorcontrib><creatorcontrib>Breuninger, M</creatorcontrib><creatorcontrib>Franken, P</creatorcontrib><creatorcontrib>Ocon, A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Requena, N</au><au>Breuninger, M</au><au>Franken, P</au><au>Ocon, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H⁺-ATPase genes from the mycorrhizal fungus Glomus mosseae</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2003-07-01</date><risdate>2003</risdate><volume>132</volume><issue>3</issue><spage>1540</spage><epage>1549</epage><pages>1540-1549</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>The establishment of the arbuscular mycorrhizal symbiosis results in a modification of the gene expression pattern in both plant and fungus to accomplish the morphological and physiological changes necessary for the bidirectional transfer of nutrients between symbionts. H(+)-ATPase enzymes play a key role establishing the electrochemical gradient required for the transfer of nutrients across the plasma membrane in both fungi and plants. Molecular analysis of the genetic changes in arbuscular mycorrhizal fungi during symbiosis allowed us to isolate a fungal cDNA clone encoding a H(+)-ATPase, GmPMA1, from Glomus mosseae (BEG12). Despite the high conservation of the catalytic domain from H(+)-ATPases, detailed analyses showed that GmPMA1 was strongly related only to a previously identified G. mosseae ATPase gene, GmHA5, and not to the other four ATPase genes known from this fungus. A developmentally regulated expression pattern could be shown for both genes, GmPMA1 and GmHA5. GmPMA1 was highly expressed during asymbiotic development, and its expression did not change when entering into symbiosis, whereas the GmHA5 transcript was induced upon plant recognition at the appressorium stage. Both genes maintained high levels of expression during intraradical development, but their expression was reduced in the extraradical mycelium. Phosphate, a key nutrient to the symbiosis, also induced the expression of GmHA5 during asymbiotic growth, whereas sucrose had a negative effect. Our results indicate that different fungal H(+)-ATPases isoforms might be recruited at different developmental stages possibly responding to the different requirements of the life in symbiosis.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>12857834</pmid><doi>10.1104/pp.102.019042</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2003-07, Vol.132 (3), p.1540-1549
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_167092
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Amino Acid Sequence
amino acid sequences
Biological and medical sciences
Cell Membrane - enzymology
Conserved Sequence
Fundamental and applied biological sciences. Psychology
fungal proteins
Fungi - cytology
Fungi - drug effects
Fungi - enzymology
Fungi - genetics
gene expression regulation
Gene Expression Regulation, Developmental - drug effects
Gene Expression Regulation, Fungal - drug effects
Genes, Fungal - genetics
Glomus mosseae
GmHA5 gene
GmPMA1 gene
H-transporting ATPase
host plants
membrane proteins
Molecular Sequence Data
mycorrhizal fungi
nucleotide sequences
Parasitism and symbiosis
parsley
Petroselinum - microbiology
Petroselinum crispum
phosphates
Phosphates - pharmacology
Phylogeny
Plant physiology and development
plasma membrane
Proton-Translocating ATPases - chemistry
Proton-Translocating ATPases - genetics
Sequence Alignment
sucrose
Sucrose - pharmacology
Symbiosis
Symbiosis - genetics
vesicular arbuscular mycorrhizae
title Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H⁺-ATPase genes from the mycorrhizal fungus Glomus mosseae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symbiotic%20status,%20phosphate,%20and%20sucrose%20regulate%20the%20expression%20of%20two%20plasma%20membrane%20H%E2%81%BA-ATPase%20genes%20from%20the%20mycorrhizal%20fungus%20Glomus%20mosseae&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Requena,%20N&rft.date=2003-07-01&rft.volume=132&rft.issue=3&rft.spage=1540&rft.epage=1549&rft.pages=1540-1549&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.102.019042&rft_dat=%3Cpubmed_cross%3E12857834%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/12857834&rfr_iscdi=true