Genetic modification of alternative respiration has differential effects on antimycin A-induced versus salicylic acid-induced resistance to Tobacco mosaic virus

Salicylic acid (SA), a natural defensive signal chemical, and antimycin A, a cytochrome pathway inhibitor, induce resistance to Tobacco mosaic virus (TMV). Pharmacological evidence suggested signaling during resistance induction by both chemicals involved alternative oxidase (AOX), sole component of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2003-07, Vol.132 (3), p.1518-1528
Hauptverfasser: Gilliland, A, Singh, D.P, Hayward, J.M, Moore, C.A, Murphy, A.M, York, C.J, Slator, J, Carr, J.P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1528
container_issue 3
container_start_page 1518
container_title Plant physiology (Bethesda)
container_volume 132
creator Gilliland, A
Singh, D.P
Hayward, J.M
Moore, C.A
Murphy, A.M
York, C.J
Slator, J
Carr, J.P
description Salicylic acid (SA), a natural defensive signal chemical, and antimycin A, a cytochrome pathway inhibitor, induce resistance to Tobacco mosaic virus (TMV). Pharmacological evidence suggested signaling during resistance induction by both chemicals involved alternative oxidase (AOX), sole component of the alternative respiratory pathway (AP). Roles of the AP include regulation of intramitochondrial reactive oxygen species and maintenance of metabolic homeostasis. Transgenic tobacco (Nicotiana tabacum) with modified AP capacities (2- to 3-fold increased or decreased) showed no alteration in phenotype with respect to basal susceptibility to TMV or the ability to display SA-induced resistance to systemic viral disease. However, in directly inoculated tissue, antimycin A-induced TMV resistance was inhibited in plants with increased AP capacities, whereas SA and antimycin A-induced resistance was transiently enhanced in plant lines with decreased AP capacities. We conclude that SA-induced TMV resistance results from activation of multiple mechanisms, a subset of which are inducible by antimycin A and influenced by AOX. Other antiviral factors, potentially including the SA-inducible RNA-dependent RNA polymerase, are regulated by AOX-independent mechanisms.
doi_str_mv 10.1104/pp.102.017640
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_167090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4281230</jstor_id><sourcerecordid>4281230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-4f35622d0f737fb515e3970bcdeb1f0e6c8fd2186b3cadff6e25f85b8ac9e74d3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEokvhyA2BL_SWxZ-Jc-ihqqBFqsSB9mw5zrh1lcTBTlbaf8NPZaqstnDiYHns95nx2K-L4j2jW8ao_DJNW0b5lrK6kvRFsWFK8JIrqV8WG0oxplo3J8WbnB8ppUww-bo4YVyrWgu-KX5fwQhzcGSIXfDB2TnEkURPbD9DGnG5A5IgTyGt0oPNBEkPCcY52J4Axm7OBDWLO8PehZFclGHsFgcd2UHKSybZ9sHtcRDrQndUsXLIsx0dkDmS29ha5yL2ki2Su5CW_LZ45W2f4d1hPi3uvn29vbwub35cfb-8uCmdathcSi9UxXlHfS1q3yqmQDQ1bV0HLfMUKqd9x5muWuFs530FXHmtWm1dA7XsxGlxvtadlnaAzuHtku3NlMJg095EG8y_yhgezH3cGVbVtKGYf3bIT_HXAnk2Q8gO-t6OEJdsaiFVI1jzX5DVaBjjCsFyBV2KOSfwx2YYNU_em2nCkJvVe-Q__n2DZ_pgNgKfD4DNzvY-4buH_MzJRjFJJXIfVu4xzzEddck14-LpnE-r7G009j5hibufHL8WZVRTLhvxB6Jpz7o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17889125</pqid></control><display><type>article</type><title>Genetic modification of alternative respiration has differential effects on antimycin A-induced versus salicylic acid-induced resistance to Tobacco mosaic virus</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Gilliland, A ; Singh, D.P ; Hayward, J.M ; Moore, C.A ; Murphy, A.M ; York, C.J ; Slator, J ; Carr, J.P</creator><creatorcontrib>Gilliland, A ; Singh, D.P ; Hayward, J.M ; Moore, C.A ; Murphy, A.M ; York, C.J ; Slator, J ; Carr, J.P</creatorcontrib><description>Salicylic acid (SA), a natural defensive signal chemical, and antimycin A, a cytochrome pathway inhibitor, induce resistance to Tobacco mosaic virus (TMV). Pharmacological evidence suggested signaling during resistance induction by both chemicals involved alternative oxidase (AOX), sole component of the alternative respiratory pathway (AP). Roles of the AP include regulation of intramitochondrial reactive oxygen species and maintenance of metabolic homeostasis. Transgenic tobacco (Nicotiana tabacum) with modified AP capacities (2- to 3-fold increased or decreased) showed no alteration in phenotype with respect to basal susceptibility to TMV or the ability to display SA-induced resistance to systemic viral disease. However, in directly inoculated tissue, antimycin A-induced TMV resistance was inhibited in plants with increased AP capacities, whereas SA and antimycin A-induced resistance was transiently enhanced in plant lines with decreased AP capacities. We conclude that SA-induced TMV resistance results from activation of multiple mechanisms, a subset of which are inducible by antimycin A and influenced by AOX. Other antiviral factors, potentially including the SA-inducible RNA-dependent RNA polymerase, are regulated by AOX-independent mechanisms.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.102.017640</identifier><identifier>PMID: 12857832</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Agronomy. Soil science and plant productions ; alternative oxidase ; alternative respiration ; antimycin A ; Antimycin A - pharmacology ; biochemical pathways ; Biological and medical sciences ; Cell Respiration - drug effects ; Cell Respiration - genetics ; cytochromes ; disease resistance ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene expression regulation ; Genetics and breeding of economic plants ; Inoculation ; Leaves ; Mitochondria ; Mitochondrial Proteins ; Nicotiana - drug effects ; Nicotiana - genetics ; Nicotiana - metabolism ; Nicotiana - virology ; Nicotiana tabacum ; Oxidases ; oxidoreductases ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Pest resistance ; Phenotype ; Plant Diseases - genetics ; Plant Diseases - virology ; Plant Leaves - drug effects ; Plant Leaves - genetics ; Plant Leaves - metabolism ; Plant pathogens ; Plant Proteins ; plant viruses ; Plants ; Plants Interacting with Other Organisms ; Plants, Genetically Modified ; Reactive oxygen species ; resistance mechanisms ; RNA-directed RNA polymerase ; salicylic acid ; Salicylic Acid - pharmacology ; signal transduction ; Tobacco mosaic virus ; Tobacco Mosaic Virus - drug effects ; Tobacco Mosaic Virus - enzymology ; Tobacco Mosaic Virus - metabolism ; transgenes ; Transgenic plants ; Varietal selection. Specialized plant breeding, plant breeding aims ; Viruses</subject><ispartof>Plant physiology (Bethesda), 2003-07, Vol.132 (3), p.1518-1528</ispartof><rights>Copyright 2003 American Society of Plant Biologists</rights><rights>2003 INIST-CNRS</rights><rights>Copyright © 2003, The American Society for Plant Biologists 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-4f35622d0f737fb515e3970bcdeb1f0e6c8fd2186b3cadff6e25f85b8ac9e74d3</citedby><cites>FETCH-LOGICAL-c591t-4f35622d0f737fb515e3970bcdeb1f0e6c8fd2186b3cadff6e25f85b8ac9e74d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4281230$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4281230$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14951404$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12857832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilliland, A</creatorcontrib><creatorcontrib>Singh, D.P</creatorcontrib><creatorcontrib>Hayward, J.M</creatorcontrib><creatorcontrib>Moore, C.A</creatorcontrib><creatorcontrib>Murphy, A.M</creatorcontrib><creatorcontrib>York, C.J</creatorcontrib><creatorcontrib>Slator, J</creatorcontrib><creatorcontrib>Carr, J.P</creatorcontrib><title>Genetic modification of alternative respiration has differential effects on antimycin A-induced versus salicylic acid-induced resistance to Tobacco mosaic virus</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Salicylic acid (SA), a natural defensive signal chemical, and antimycin A, a cytochrome pathway inhibitor, induce resistance to Tobacco mosaic virus (TMV). Pharmacological evidence suggested signaling during resistance induction by both chemicals involved alternative oxidase (AOX), sole component of the alternative respiratory pathway (AP). Roles of the AP include regulation of intramitochondrial reactive oxygen species and maintenance of metabolic homeostasis. Transgenic tobacco (Nicotiana tabacum) with modified AP capacities (2- to 3-fold increased or decreased) showed no alteration in phenotype with respect to basal susceptibility to TMV or the ability to display SA-induced resistance to systemic viral disease. However, in directly inoculated tissue, antimycin A-induced TMV resistance was inhibited in plants with increased AP capacities, whereas SA and antimycin A-induced resistance was transiently enhanced in plant lines with decreased AP capacities. We conclude that SA-induced TMV resistance results from activation of multiple mechanisms, a subset of which are inducible by antimycin A and influenced by AOX. Other antiviral factors, potentially including the SA-inducible RNA-dependent RNA polymerase, are regulated by AOX-independent mechanisms.</description><subject>Agronomy. Soil science and plant productions</subject><subject>alternative oxidase</subject><subject>alternative respiration</subject><subject>antimycin A</subject><subject>Antimycin A - pharmacology</subject><subject>biochemical pathways</subject><subject>Biological and medical sciences</subject><subject>Cell Respiration - drug effects</subject><subject>Cell Respiration - genetics</subject><subject>cytochromes</subject><subject>disease resistance</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene expression regulation</subject><subject>Genetics and breeding of economic plants</subject><subject>Inoculation</subject><subject>Leaves</subject><subject>Mitochondria</subject><subject>Mitochondrial Proteins</subject><subject>Nicotiana - drug effects</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Nicotiana - virology</subject><subject>Nicotiana tabacum</subject><subject>Oxidases</subject><subject>oxidoreductases</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Pest resistance</subject><subject>Phenotype</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - virology</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - metabolism</subject><subject>Plant pathogens</subject><subject>Plant Proteins</subject><subject>plant viruses</subject><subject>Plants</subject><subject>Plants Interacting with Other Organisms</subject><subject>Plants, Genetically Modified</subject><subject>Reactive oxygen species</subject><subject>resistance mechanisms</subject><subject>RNA-directed RNA polymerase</subject><subject>salicylic acid</subject><subject>Salicylic Acid - pharmacology</subject><subject>signal transduction</subject><subject>Tobacco mosaic virus</subject><subject>Tobacco Mosaic Virus - drug effects</subject><subject>Tobacco Mosaic Virus - enzymology</subject><subject>Tobacco Mosaic Virus - metabolism</subject><subject>transgenes</subject><subject>Transgenic plants</subject><subject>Varietal selection. Specialized plant breeding, plant breeding aims</subject><subject>Viruses</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhiMEokvhyA2BL_SWxZ-Jc-ihqqBFqsSB9mw5zrh1lcTBTlbaf8NPZaqstnDiYHns95nx2K-L4j2jW8ao_DJNW0b5lrK6kvRFsWFK8JIrqV8WG0oxplo3J8WbnB8ppUww-bo4YVyrWgu-KX5fwQhzcGSIXfDB2TnEkURPbD9DGnG5A5IgTyGt0oPNBEkPCcY52J4Axm7OBDWLO8PehZFclGHsFgcd2UHKSybZ9sHtcRDrQndUsXLIsx0dkDmS29ha5yL2ki2Su5CW_LZ45W2f4d1hPi3uvn29vbwub35cfb-8uCmdathcSi9UxXlHfS1q3yqmQDQ1bV0HLfMUKqd9x5muWuFs530FXHmtWm1dA7XsxGlxvtadlnaAzuHtku3NlMJg095EG8y_yhgezH3cGVbVtKGYf3bIT_HXAnk2Q8gO-t6OEJdsaiFVI1jzX5DVaBjjCsFyBV2KOSfwx2YYNU_em2nCkJvVe-Q__n2DZ_pgNgKfD4DNzvY-4buH_MzJRjFJJXIfVu4xzzEddck14-LpnE-r7G009j5hibufHL8WZVRTLhvxB6Jpz7o</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Gilliland, A</creator><creator>Singh, D.P</creator><creator>Hayward, J.M</creator><creator>Moore, C.A</creator><creator>Murphy, A.M</creator><creator>York, C.J</creator><creator>Slator, J</creator><creator>Carr, J.P</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><general>The American Society for Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030701</creationdate><title>Genetic modification of alternative respiration has differential effects on antimycin A-induced versus salicylic acid-induced resistance to Tobacco mosaic virus</title><author>Gilliland, A ; Singh, D.P ; Hayward, J.M ; Moore, C.A ; Murphy, A.M ; York, C.J ; Slator, J ; Carr, J.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-4f35622d0f737fb515e3970bcdeb1f0e6c8fd2186b3cadff6e25f85b8ac9e74d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>alternative oxidase</topic><topic>alternative respiration</topic><topic>antimycin A</topic><topic>Antimycin A - pharmacology</topic><topic>biochemical pathways</topic><topic>Biological and medical sciences</topic><topic>Cell Respiration - drug effects</topic><topic>Cell Respiration - genetics</topic><topic>cytochromes</topic><topic>disease resistance</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene expression regulation</topic><topic>Genetics and breeding of economic plants</topic><topic>Inoculation</topic><topic>Leaves</topic><topic>Mitochondria</topic><topic>Mitochondrial Proteins</topic><topic>Nicotiana - drug effects</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Nicotiana - virology</topic><topic>Nicotiana tabacum</topic><topic>Oxidases</topic><topic>oxidoreductases</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Pest resistance</topic><topic>Phenotype</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - virology</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - metabolism</topic><topic>Plant pathogens</topic><topic>Plant Proteins</topic><topic>plant viruses</topic><topic>Plants</topic><topic>Plants Interacting with Other Organisms</topic><topic>Plants, Genetically Modified</topic><topic>Reactive oxygen species</topic><topic>resistance mechanisms</topic><topic>RNA-directed RNA polymerase</topic><topic>salicylic acid</topic><topic>Salicylic Acid - pharmacology</topic><topic>signal transduction</topic><topic>Tobacco mosaic virus</topic><topic>Tobacco Mosaic Virus - drug effects</topic><topic>Tobacco Mosaic Virus - enzymology</topic><topic>Tobacco Mosaic Virus - metabolism</topic><topic>transgenes</topic><topic>Transgenic plants</topic><topic>Varietal selection. Specialized plant breeding, plant breeding aims</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilliland, A</creatorcontrib><creatorcontrib>Singh, D.P</creatorcontrib><creatorcontrib>Hayward, J.M</creatorcontrib><creatorcontrib>Moore, C.A</creatorcontrib><creatorcontrib>Murphy, A.M</creatorcontrib><creatorcontrib>York, C.J</creatorcontrib><creatorcontrib>Slator, J</creatorcontrib><creatorcontrib>Carr, J.P</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilliland, A</au><au>Singh, D.P</au><au>Hayward, J.M</au><au>Moore, C.A</au><au>Murphy, A.M</au><au>York, C.J</au><au>Slator, J</au><au>Carr, J.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic modification of alternative respiration has differential effects on antimycin A-induced versus salicylic acid-induced resistance to Tobacco mosaic virus</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2003-07-01</date><risdate>2003</risdate><volume>132</volume><issue>3</issue><spage>1518</spage><epage>1528</epage><pages>1518-1528</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Salicylic acid (SA), a natural defensive signal chemical, and antimycin A, a cytochrome pathway inhibitor, induce resistance to Tobacco mosaic virus (TMV). Pharmacological evidence suggested signaling during resistance induction by both chemicals involved alternative oxidase (AOX), sole component of the alternative respiratory pathway (AP). Roles of the AP include regulation of intramitochondrial reactive oxygen species and maintenance of metabolic homeostasis. Transgenic tobacco (Nicotiana tabacum) with modified AP capacities (2- to 3-fold increased or decreased) showed no alteration in phenotype with respect to basal susceptibility to TMV or the ability to display SA-induced resistance to systemic viral disease. However, in directly inoculated tissue, antimycin A-induced TMV resistance was inhibited in plants with increased AP capacities, whereas SA and antimycin A-induced resistance was transiently enhanced in plant lines with decreased AP capacities. We conclude that SA-induced TMV resistance results from activation of multiple mechanisms, a subset of which are inducible by antimycin A and influenced by AOX. Other antiviral factors, potentially including the SA-inducible RNA-dependent RNA polymerase, are regulated by AOX-independent mechanisms.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>12857832</pmid><doi>10.1104/pp.102.017640</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2003-07, Vol.132 (3), p.1518-1528
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_167090
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects Agronomy. Soil science and plant productions
alternative oxidase
alternative respiration
antimycin A
Antimycin A - pharmacology
biochemical pathways
Biological and medical sciences
Cell Respiration - drug effects
Cell Respiration - genetics
cytochromes
disease resistance
Fundamental and applied biological sciences. Psychology
Gene expression
Gene expression regulation
Genetics and breeding of economic plants
Inoculation
Leaves
Mitochondria
Mitochondrial Proteins
Nicotiana - drug effects
Nicotiana - genetics
Nicotiana - metabolism
Nicotiana - virology
Nicotiana tabacum
Oxidases
oxidoreductases
Oxidoreductases - genetics
Oxidoreductases - metabolism
Pest resistance
Phenotype
Plant Diseases - genetics
Plant Diseases - virology
Plant Leaves - drug effects
Plant Leaves - genetics
Plant Leaves - metabolism
Plant pathogens
Plant Proteins
plant viruses
Plants
Plants Interacting with Other Organisms
Plants, Genetically Modified
Reactive oxygen species
resistance mechanisms
RNA-directed RNA polymerase
salicylic acid
Salicylic Acid - pharmacology
signal transduction
Tobacco mosaic virus
Tobacco Mosaic Virus - drug effects
Tobacco Mosaic Virus - enzymology
Tobacco Mosaic Virus - metabolism
transgenes
Transgenic plants
Varietal selection. Specialized plant breeding, plant breeding aims
Viruses
title Genetic modification of alternative respiration has differential effects on antimycin A-induced versus salicylic acid-induced resistance to Tobacco mosaic virus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20modification%20of%20alternative%20respiration%20has%20differential%20effects%20on%20antimycin%20A-induced%20versus%20salicylic%20acid-induced%20resistance%20to%20Tobacco%20mosaic%20virus&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Gilliland,%20A&rft.date=2003-07-01&rft.volume=132&rft.issue=3&rft.spage=1518&rft.epage=1528&rft.pages=1518-1528&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.102.017640&rft_dat=%3Cjstor_pubme%3E4281230%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17889125&rft_id=info:pmid/12857832&rft_jstor_id=4281230&rfr_iscdi=true