Maternal nutrient restriction alters gene expression in the ovine fetal heart
Adequate maternal nutrient supply is critical for normal fetal organogenesis. We previously demonstrated that a global 50% nutrient restriction during the first half of gestation causes compensatory growth of both the left and right ventricles of the fetal heart by day 78 of gestation. Thus, it was...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 2004-07, Vol.558 (1), p.111-121 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121 |
---|---|
container_issue | 1 |
container_start_page | 111 |
container_title | The Journal of physiology |
container_volume | 558 |
creator | Han, Hyung‐Chul Austin, Kathleen J. Nathanielsz, Peter W. Ford, Stephen P. Nijland, Mark J. Hansen, Thomas R. |
description | Adequate maternal nutrient supply is critical for normal fetal organogenesis. We previously demonstrated that a global 50%
nutrient restriction during the first half of gestation causes compensatory growth of both the left and right ventricles of
the fetal heart by day 78 of gestation. Thus, it was hypothesized that maternal nutrient restriction significantly altered
gene expression in the fetal cardiac left ventricle (LV). Pregnant ewes were randomly grouped into control (100% national
research council (NRC) requirements) or nutrient-restricted groups (50% NRC requirements) from day 28 to day 78 of gestation,
at which time fetal LV were collected. Fetal LV mRNA was used to construct a suppression subtraction cDNA library from which
11 cDNA clones were found by differential dot blot hybridization and virtual Northern analysis to be up-regulated by maternal
nutrient restriction: caveolin, stathmin, G-1 cyclin, α-actin, titin, cardiac ankyrin repeat protein (CARP), cardiac-specific
RNA-helicase activated by MEF2C (CHAMP), endothelial and smooth muscle derived neuropilin (ESDN), prostatic binding protein,
NADH dehydrogenase subunit 2, and an unknown protein. Six of these clones (cardiac α-actin, cyclin G1, stathmin, NADH dehydrogenase
subunit 2, titin and prostatic binding protein) have been linked to cardiac hypertrophy in other species including humans.
Of the remaining clones, caveolin, CARP and CHAMP have been shown to inhibit remodelling of hypertrophic tissue. Compensatory
growth of fetal LV in response to maternal undernutrition is concluded to be associated with increased transcription of genes
related to cardiac hypertrophy, compensatory growth or remodelling. Counter-regulatory gene transcription may be increased,
in part, as a response to moderating the degree of cardiac remodelling. The short- and long-term consequences of these changes
in fetal heart gene expression and induction of specific homeostatic mechanisms in response to maternal undernutrition remain
to be determined. |
doi_str_mv | 10.1113/jphysiol.2004.061697 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1664914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66666833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4851-e6dc50aa35211f876131a1db7b5a3a03a63432690ec3b0aa375b8caadf1c2b263</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhHyCUE5yyeDKxk1yQUFW-1AoO5WxNvJONq2y82NmW_fc4ZPm64Yutmed9PfYrxHOQawDA17f7_hidH9aFlOVaatBN9UCsoNRNXlUNPhQrKYsix0rBmXgS462UgLJpHoszUIAotVqJ62uaOIw0ZONhCo7HKQsc08lOzo8ZDakbsy2PnPH3fWrFuezGbOo583cu1TuekrxnCtNT8aijIfKz034uvr67vLn4kF99fv_x4u1VbstaQc56Y5UkQlUAdHWlAYFg01atIiSJpLHEQjeSLbYzV6m2tkSbDmzRFhrPxZvFd39od7yxaexAg9kHt6NwNJ6c-bczut5s_Z0BrcsGymTw8mQQ_LdDerDZuWh5GGhkf4hGz6tGTGC5gDb4GAN3vy8BaeYczK8czJyDWXJIshd_D_hHdPr4BNQLcO8GPv6Xqbn59AULSNJXi7R32_7eBTYLHL11PB2NUrWBnzY_AMVGqH8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66666833</pqid></control><display><type>article</type><title>Maternal nutrient restriction alters gene expression in the ovine fetal heart</title><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Han, Hyung‐Chul ; Austin, Kathleen J. ; Nathanielsz, Peter W. ; Ford, Stephen P. ; Nijland, Mark J. ; Hansen, Thomas R.</creator><creatorcontrib>Han, Hyung‐Chul ; Austin, Kathleen J. ; Nathanielsz, Peter W. ; Ford, Stephen P. ; Nijland, Mark J. ; Hansen, Thomas R.</creatorcontrib><description>Adequate maternal nutrient supply is critical for normal fetal organogenesis. We previously demonstrated that a global 50%
nutrient restriction during the first half of gestation causes compensatory growth of both the left and right ventricles of
the fetal heart by day 78 of gestation. Thus, it was hypothesized that maternal nutrient restriction significantly altered
gene expression in the fetal cardiac left ventricle (LV). Pregnant ewes were randomly grouped into control (100% national
research council (NRC) requirements) or nutrient-restricted groups (50% NRC requirements) from day 28 to day 78 of gestation,
at which time fetal LV were collected. Fetal LV mRNA was used to construct a suppression subtraction cDNA library from which
11 cDNA clones were found by differential dot blot hybridization and virtual Northern analysis to be up-regulated by maternal
nutrient restriction: caveolin, stathmin, G-1 cyclin, α-actin, titin, cardiac ankyrin repeat protein (CARP), cardiac-specific
RNA-helicase activated by MEF2C (CHAMP), endothelial and smooth muscle derived neuropilin (ESDN), prostatic binding protein,
NADH dehydrogenase subunit 2, and an unknown protein. Six of these clones (cardiac α-actin, cyclin G1, stathmin, NADH dehydrogenase
subunit 2, titin and prostatic binding protein) have been linked to cardiac hypertrophy in other species including humans.
Of the remaining clones, caveolin, CARP and CHAMP have been shown to inhibit remodelling of hypertrophic tissue. Compensatory
growth of fetal LV in response to maternal undernutrition is concluded to be associated with increased transcription of genes
related to cardiac hypertrophy, compensatory growth or remodelling. Counter-regulatory gene transcription may be increased,
in part, as a response to moderating the degree of cardiac remodelling. The short- and long-term consequences of these changes
in fetal heart gene expression and induction of specific homeostatic mechanisms in response to maternal undernutrition remain
to be determined.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2004.061697</identifier><identifier>PMID: 15133065</identifier><language>eng</language><publisher>9600 Garsington Road , Oxford , OX4 2DQ , UK: The Physiological Society</publisher><subject>Animals ; Body Weight ; Caloric Restriction ; Female ; Fetal Nutrition Disorders - genetics ; Fetal Nutrition Disorders - pathology ; Fetal Nutrition Disorders - physiopathology ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Gene Library ; Heart - embryology ; Heart - physiology ; Heart Ventricles - embryology ; Heart Ventricles - pathology ; Myocardium - pathology ; Organ Size ; Pregnancy ; Research Papers ; Sheep ; Transcription, Genetic ; Ventricular Function</subject><ispartof>The Journal of physiology, 2004-07, Vol.558 (1), p.111-121</ispartof><rights>2004 The Journal of Physiology © 2004 The Physiological Society</rights><rights>The Physiological Society 2004 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4851-e6dc50aa35211f876131a1db7b5a3a03a63432690ec3b0aa375b8caadf1c2b263</citedby><cites>FETCH-LOGICAL-c4851-e6dc50aa35211f876131a1db7b5a3a03a63432690ec3b0aa375b8caadf1c2b263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1664914/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1664914/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15133065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Hyung‐Chul</creatorcontrib><creatorcontrib>Austin, Kathleen J.</creatorcontrib><creatorcontrib>Nathanielsz, Peter W.</creatorcontrib><creatorcontrib>Ford, Stephen P.</creatorcontrib><creatorcontrib>Nijland, Mark J.</creatorcontrib><creatorcontrib>Hansen, Thomas R.</creatorcontrib><title>Maternal nutrient restriction alters gene expression in the ovine fetal heart</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Adequate maternal nutrient supply is critical for normal fetal organogenesis. We previously demonstrated that a global 50%
nutrient restriction during the first half of gestation causes compensatory growth of both the left and right ventricles of
the fetal heart by day 78 of gestation. Thus, it was hypothesized that maternal nutrient restriction significantly altered
gene expression in the fetal cardiac left ventricle (LV). Pregnant ewes were randomly grouped into control (100% national
research council (NRC) requirements) or nutrient-restricted groups (50% NRC requirements) from day 28 to day 78 of gestation,
at which time fetal LV were collected. Fetal LV mRNA was used to construct a suppression subtraction cDNA library from which
11 cDNA clones were found by differential dot blot hybridization and virtual Northern analysis to be up-regulated by maternal
nutrient restriction: caveolin, stathmin, G-1 cyclin, α-actin, titin, cardiac ankyrin repeat protein (CARP), cardiac-specific
RNA-helicase activated by MEF2C (CHAMP), endothelial and smooth muscle derived neuropilin (ESDN), prostatic binding protein,
NADH dehydrogenase subunit 2, and an unknown protein. Six of these clones (cardiac α-actin, cyclin G1, stathmin, NADH dehydrogenase
subunit 2, titin and prostatic binding protein) have been linked to cardiac hypertrophy in other species including humans.
Of the remaining clones, caveolin, CARP and CHAMP have been shown to inhibit remodelling of hypertrophic tissue. Compensatory
growth of fetal LV in response to maternal undernutrition is concluded to be associated with increased transcription of genes
related to cardiac hypertrophy, compensatory growth or remodelling. Counter-regulatory gene transcription may be increased,
in part, as a response to moderating the degree of cardiac remodelling. The short- and long-term consequences of these changes
in fetal heart gene expression and induction of specific homeostatic mechanisms in response to maternal undernutrition remain
to be determined.</description><subject>Animals</subject><subject>Body Weight</subject><subject>Caloric Restriction</subject><subject>Female</subject><subject>Fetal Nutrition Disorders - genetics</subject><subject>Fetal Nutrition Disorders - pathology</subject><subject>Fetal Nutrition Disorders - physiopathology</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Library</subject><subject>Heart - embryology</subject><subject>Heart - physiology</subject><subject>Heart Ventricles - embryology</subject><subject>Heart Ventricles - pathology</subject><subject>Myocardium - pathology</subject><subject>Organ Size</subject><subject>Pregnancy</subject><subject>Research Papers</subject><subject>Sheep</subject><subject>Transcription, Genetic</subject><subject>Ventricular Function</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EokvhHyCUE5yyeDKxk1yQUFW-1AoO5WxNvJONq2y82NmW_fc4ZPm64Yutmed9PfYrxHOQawDA17f7_hidH9aFlOVaatBN9UCsoNRNXlUNPhQrKYsix0rBmXgS462UgLJpHoszUIAotVqJ62uaOIw0ZONhCo7HKQsc08lOzo8ZDakbsy2PnPH3fWrFuezGbOo583cu1TuekrxnCtNT8aijIfKz034uvr67vLn4kF99fv_x4u1VbstaQc56Y5UkQlUAdHWlAYFg01atIiSJpLHEQjeSLbYzV6m2tkSbDmzRFhrPxZvFd39od7yxaexAg9kHt6NwNJ6c-bczut5s_Z0BrcsGymTw8mQQ_LdDerDZuWh5GGhkf4hGz6tGTGC5gDb4GAN3vy8BaeYczK8czJyDWXJIshd_D_hHdPr4BNQLcO8GPv6Xqbn59AULSNJXi7R32_7eBTYLHL11PB2NUrWBnzY_AMVGqH8</recordid><startdate>200407</startdate><enddate>200407</enddate><creator>Han, Hyung‐Chul</creator><creator>Austin, Kathleen J.</creator><creator>Nathanielsz, Peter W.</creator><creator>Ford, Stephen P.</creator><creator>Nijland, Mark J.</creator><creator>Hansen, Thomas R.</creator><general>The Physiological Society</general><general>Blackwell Science Ltd</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200407</creationdate><title>Maternal nutrient restriction alters gene expression in the ovine fetal heart</title><author>Han, Hyung‐Chul ; Austin, Kathleen J. ; Nathanielsz, Peter W. ; Ford, Stephen P. ; Nijland, Mark J. ; Hansen, Thomas R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4851-e6dc50aa35211f876131a1db7b5a3a03a63432690ec3b0aa375b8caadf1c2b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Body Weight</topic><topic>Caloric Restriction</topic><topic>Female</topic><topic>Fetal Nutrition Disorders - genetics</topic><topic>Fetal Nutrition Disorders - pathology</topic><topic>Fetal Nutrition Disorders - physiopathology</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Library</topic><topic>Heart - embryology</topic><topic>Heart - physiology</topic><topic>Heart Ventricles - embryology</topic><topic>Heart Ventricles - pathology</topic><topic>Myocardium - pathology</topic><topic>Organ Size</topic><topic>Pregnancy</topic><topic>Research Papers</topic><topic>Sheep</topic><topic>Transcription, Genetic</topic><topic>Ventricular Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Hyung‐Chul</creatorcontrib><creatorcontrib>Austin, Kathleen J.</creatorcontrib><creatorcontrib>Nathanielsz, Peter W.</creatorcontrib><creatorcontrib>Ford, Stephen P.</creatorcontrib><creatorcontrib>Nijland, Mark J.</creatorcontrib><creatorcontrib>Hansen, Thomas R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Hyung‐Chul</au><au>Austin, Kathleen J.</au><au>Nathanielsz, Peter W.</au><au>Ford, Stephen P.</au><au>Nijland, Mark J.</au><au>Hansen, Thomas R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maternal nutrient restriction alters gene expression in the ovine fetal heart</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2004-07</date><risdate>2004</risdate><volume>558</volume><issue>1</issue><spage>111</spage><epage>121</epage><pages>111-121</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>Adequate maternal nutrient supply is critical for normal fetal organogenesis. We previously demonstrated that a global 50%
nutrient restriction during the first half of gestation causes compensatory growth of both the left and right ventricles of
the fetal heart by day 78 of gestation. Thus, it was hypothesized that maternal nutrient restriction significantly altered
gene expression in the fetal cardiac left ventricle (LV). Pregnant ewes were randomly grouped into control (100% national
research council (NRC) requirements) or nutrient-restricted groups (50% NRC requirements) from day 28 to day 78 of gestation,
at which time fetal LV were collected. Fetal LV mRNA was used to construct a suppression subtraction cDNA library from which
11 cDNA clones were found by differential dot blot hybridization and virtual Northern analysis to be up-regulated by maternal
nutrient restriction: caveolin, stathmin, G-1 cyclin, α-actin, titin, cardiac ankyrin repeat protein (CARP), cardiac-specific
RNA-helicase activated by MEF2C (CHAMP), endothelial and smooth muscle derived neuropilin (ESDN), prostatic binding protein,
NADH dehydrogenase subunit 2, and an unknown protein. Six of these clones (cardiac α-actin, cyclin G1, stathmin, NADH dehydrogenase
subunit 2, titin and prostatic binding protein) have been linked to cardiac hypertrophy in other species including humans.
Of the remaining clones, caveolin, CARP and CHAMP have been shown to inhibit remodelling of hypertrophic tissue. Compensatory
growth of fetal LV in response to maternal undernutrition is concluded to be associated with increased transcription of genes
related to cardiac hypertrophy, compensatory growth or remodelling. Counter-regulatory gene transcription may be increased,
in part, as a response to moderating the degree of cardiac remodelling. The short- and long-term consequences of these changes
in fetal heart gene expression and induction of specific homeostatic mechanisms in response to maternal undernutrition remain
to be determined.</abstract><cop>9600 Garsington Road , Oxford , OX4 2DQ , UK</cop><pub>The Physiological Society</pub><pmid>15133065</pmid><doi>10.1113/jphysiol.2004.061697</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3751 |
ispartof | The Journal of physiology, 2004-07, Vol.558 (1), p.111-121 |
issn | 0022-3751 1469-7793 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1664914 |
source | MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Body Weight Caloric Restriction Female Fetal Nutrition Disorders - genetics Fetal Nutrition Disorders - pathology Fetal Nutrition Disorders - physiopathology Gene Expression Profiling Gene Expression Regulation, Developmental Gene Library Heart - embryology Heart - physiology Heart Ventricles - embryology Heart Ventricles - pathology Myocardium - pathology Organ Size Pregnancy Research Papers Sheep Transcription, Genetic Ventricular Function |
title | Maternal nutrient restriction alters gene expression in the ovine fetal heart |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maternal%20nutrient%20restriction%20alters%20gene%20expression%20in%20the%20ovine%20fetal%20heart&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Han,%20Hyung%E2%80%90Chul&rft.date=2004-07&rft.volume=558&rft.issue=1&rft.spage=111&rft.epage=121&rft.pages=111-121&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2004.061697&rft_dat=%3Cproquest_pubme%3E66666833%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66666833&rft_id=info:pmid/15133065&rfr_iscdi=true |