Maternal nutrient restriction alters gene expression in the ovine fetal heart

Adequate maternal nutrient supply is critical for normal fetal organogenesis. We previously demonstrated that a global 50% nutrient restriction during the first half of gestation causes compensatory growth of both the left and right ventricles of the fetal heart by day 78 of gestation. Thus, it was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2004-07, Vol.558 (1), p.111-121
Hauptverfasser: Han, Hyung‐Chul, Austin, Kathleen J., Nathanielsz, Peter W., Ford, Stephen P., Nijland, Mark J., Hansen, Thomas R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue 1
container_start_page 111
container_title The Journal of physiology
container_volume 558
creator Han, Hyung‐Chul
Austin, Kathleen J.
Nathanielsz, Peter W.
Ford, Stephen P.
Nijland, Mark J.
Hansen, Thomas R.
description Adequate maternal nutrient supply is critical for normal fetal organogenesis. We previously demonstrated that a global 50% nutrient restriction during the first half of gestation causes compensatory growth of both the left and right ventricles of the fetal heart by day 78 of gestation. Thus, it was hypothesized that maternal nutrient restriction significantly altered gene expression in the fetal cardiac left ventricle (LV). Pregnant ewes were randomly grouped into control (100% national research council (NRC) requirements) or nutrient-restricted groups (50% NRC requirements) from day 28 to day 78 of gestation, at which time fetal LV were collected. Fetal LV mRNA was used to construct a suppression subtraction cDNA library from which 11 cDNA clones were found by differential dot blot hybridization and virtual Northern analysis to be up-regulated by maternal nutrient restriction: caveolin, stathmin, G-1 cyclin, α-actin, titin, cardiac ankyrin repeat protein (CARP), cardiac-specific RNA-helicase activated by MEF2C (CHAMP), endothelial and smooth muscle derived neuropilin (ESDN), prostatic binding protein, NADH dehydrogenase subunit 2, and an unknown protein. Six of these clones (cardiac α-actin, cyclin G1, stathmin, NADH dehydrogenase subunit 2, titin and prostatic binding protein) have been linked to cardiac hypertrophy in other species including humans. Of the remaining clones, caveolin, CARP and CHAMP have been shown to inhibit remodelling of hypertrophic tissue. Compensatory growth of fetal LV in response to maternal undernutrition is concluded to be associated with increased transcription of genes related to cardiac hypertrophy, compensatory growth or remodelling. Counter-regulatory gene transcription may be increased, in part, as a response to moderating the degree of cardiac remodelling. The short- and long-term consequences of these changes in fetal heart gene expression and induction of specific homeostatic mechanisms in response to maternal undernutrition remain to be determined.
doi_str_mv 10.1113/jphysiol.2004.061697
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1664914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66666833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4851-e6dc50aa35211f876131a1db7b5a3a03a63432690ec3b0aa375b8caadf1c2b263</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhHyCUE5yyeDKxk1yQUFW-1AoO5WxNvJONq2y82NmW_fc4ZPm64Yutmed9PfYrxHOQawDA17f7_hidH9aFlOVaatBN9UCsoNRNXlUNPhQrKYsix0rBmXgS462UgLJpHoszUIAotVqJ62uaOIw0ZONhCo7HKQsc08lOzo8ZDakbsy2PnPH3fWrFuezGbOo583cu1TuekrxnCtNT8aijIfKz034uvr67vLn4kF99fv_x4u1VbstaQc56Y5UkQlUAdHWlAYFg01atIiSJpLHEQjeSLbYzV6m2tkSbDmzRFhrPxZvFd39od7yxaexAg9kHt6NwNJ6c-bczut5s_Z0BrcsGymTw8mQQ_LdDerDZuWh5GGhkf4hGz6tGTGC5gDb4GAN3vy8BaeYczK8czJyDWXJIshd_D_hHdPr4BNQLcO8GPv6Xqbn59AULSNJXi7R32_7eBTYLHL11PB2NUrWBnzY_AMVGqH8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66666833</pqid></control><display><type>article</type><title>Maternal nutrient restriction alters gene expression in the ovine fetal heart</title><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Han, Hyung‐Chul ; Austin, Kathleen J. ; Nathanielsz, Peter W. ; Ford, Stephen P. ; Nijland, Mark J. ; Hansen, Thomas R.</creator><creatorcontrib>Han, Hyung‐Chul ; Austin, Kathleen J. ; Nathanielsz, Peter W. ; Ford, Stephen P. ; Nijland, Mark J. ; Hansen, Thomas R.</creatorcontrib><description>Adequate maternal nutrient supply is critical for normal fetal organogenesis. We previously demonstrated that a global 50% nutrient restriction during the first half of gestation causes compensatory growth of both the left and right ventricles of the fetal heart by day 78 of gestation. Thus, it was hypothesized that maternal nutrient restriction significantly altered gene expression in the fetal cardiac left ventricle (LV). Pregnant ewes were randomly grouped into control (100% national research council (NRC) requirements) or nutrient-restricted groups (50% NRC requirements) from day 28 to day 78 of gestation, at which time fetal LV were collected. Fetal LV mRNA was used to construct a suppression subtraction cDNA library from which 11 cDNA clones were found by differential dot blot hybridization and virtual Northern analysis to be up-regulated by maternal nutrient restriction: caveolin, stathmin, G-1 cyclin, α-actin, titin, cardiac ankyrin repeat protein (CARP), cardiac-specific RNA-helicase activated by MEF2C (CHAMP), endothelial and smooth muscle derived neuropilin (ESDN), prostatic binding protein, NADH dehydrogenase subunit 2, and an unknown protein. Six of these clones (cardiac α-actin, cyclin G1, stathmin, NADH dehydrogenase subunit 2, titin and prostatic binding protein) have been linked to cardiac hypertrophy in other species including humans. Of the remaining clones, caveolin, CARP and CHAMP have been shown to inhibit remodelling of hypertrophic tissue. Compensatory growth of fetal LV in response to maternal undernutrition is concluded to be associated with increased transcription of genes related to cardiac hypertrophy, compensatory growth or remodelling. Counter-regulatory gene transcription may be increased, in part, as a response to moderating the degree of cardiac remodelling. The short- and long-term consequences of these changes in fetal heart gene expression and induction of specific homeostatic mechanisms in response to maternal undernutrition remain to be determined.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2004.061697</identifier><identifier>PMID: 15133065</identifier><language>eng</language><publisher>9600 Garsington Road , Oxford , OX4 2DQ , UK: The Physiological Society</publisher><subject>Animals ; Body Weight ; Caloric Restriction ; Female ; Fetal Nutrition Disorders - genetics ; Fetal Nutrition Disorders - pathology ; Fetal Nutrition Disorders - physiopathology ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Gene Library ; Heart - embryology ; Heart - physiology ; Heart Ventricles - embryology ; Heart Ventricles - pathology ; Myocardium - pathology ; Organ Size ; Pregnancy ; Research Papers ; Sheep ; Transcription, Genetic ; Ventricular Function</subject><ispartof>The Journal of physiology, 2004-07, Vol.558 (1), p.111-121</ispartof><rights>2004 The Journal of Physiology © 2004 The Physiological Society</rights><rights>The Physiological Society 2004 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4851-e6dc50aa35211f876131a1db7b5a3a03a63432690ec3b0aa375b8caadf1c2b263</citedby><cites>FETCH-LOGICAL-c4851-e6dc50aa35211f876131a1db7b5a3a03a63432690ec3b0aa375b8caadf1c2b263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1664914/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1664914/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15133065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Hyung‐Chul</creatorcontrib><creatorcontrib>Austin, Kathleen J.</creatorcontrib><creatorcontrib>Nathanielsz, Peter W.</creatorcontrib><creatorcontrib>Ford, Stephen P.</creatorcontrib><creatorcontrib>Nijland, Mark J.</creatorcontrib><creatorcontrib>Hansen, Thomas R.</creatorcontrib><title>Maternal nutrient restriction alters gene expression in the ovine fetal heart</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Adequate maternal nutrient supply is critical for normal fetal organogenesis. We previously demonstrated that a global 50% nutrient restriction during the first half of gestation causes compensatory growth of both the left and right ventricles of the fetal heart by day 78 of gestation. Thus, it was hypothesized that maternal nutrient restriction significantly altered gene expression in the fetal cardiac left ventricle (LV). Pregnant ewes were randomly grouped into control (100% national research council (NRC) requirements) or nutrient-restricted groups (50% NRC requirements) from day 28 to day 78 of gestation, at which time fetal LV were collected. Fetal LV mRNA was used to construct a suppression subtraction cDNA library from which 11 cDNA clones were found by differential dot blot hybridization and virtual Northern analysis to be up-regulated by maternal nutrient restriction: caveolin, stathmin, G-1 cyclin, α-actin, titin, cardiac ankyrin repeat protein (CARP), cardiac-specific RNA-helicase activated by MEF2C (CHAMP), endothelial and smooth muscle derived neuropilin (ESDN), prostatic binding protein, NADH dehydrogenase subunit 2, and an unknown protein. Six of these clones (cardiac α-actin, cyclin G1, stathmin, NADH dehydrogenase subunit 2, titin and prostatic binding protein) have been linked to cardiac hypertrophy in other species including humans. Of the remaining clones, caveolin, CARP and CHAMP have been shown to inhibit remodelling of hypertrophic tissue. Compensatory growth of fetal LV in response to maternal undernutrition is concluded to be associated with increased transcription of genes related to cardiac hypertrophy, compensatory growth or remodelling. Counter-regulatory gene transcription may be increased, in part, as a response to moderating the degree of cardiac remodelling. The short- and long-term consequences of these changes in fetal heart gene expression and induction of specific homeostatic mechanisms in response to maternal undernutrition remain to be determined.</description><subject>Animals</subject><subject>Body Weight</subject><subject>Caloric Restriction</subject><subject>Female</subject><subject>Fetal Nutrition Disorders - genetics</subject><subject>Fetal Nutrition Disorders - pathology</subject><subject>Fetal Nutrition Disorders - physiopathology</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Library</subject><subject>Heart - embryology</subject><subject>Heart - physiology</subject><subject>Heart Ventricles - embryology</subject><subject>Heart Ventricles - pathology</subject><subject>Myocardium - pathology</subject><subject>Organ Size</subject><subject>Pregnancy</subject><subject>Research Papers</subject><subject>Sheep</subject><subject>Transcription, Genetic</subject><subject>Ventricular Function</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EokvhHyCUE5yyeDKxk1yQUFW-1AoO5WxNvJONq2y82NmW_fc4ZPm64Yutmed9PfYrxHOQawDA17f7_hidH9aFlOVaatBN9UCsoNRNXlUNPhQrKYsix0rBmXgS462UgLJpHoszUIAotVqJ62uaOIw0ZONhCo7HKQsc08lOzo8ZDakbsy2PnPH3fWrFuezGbOo583cu1TuekrxnCtNT8aijIfKz034uvr67vLn4kF99fv_x4u1VbstaQc56Y5UkQlUAdHWlAYFg01atIiSJpLHEQjeSLbYzV6m2tkSbDmzRFhrPxZvFd39od7yxaexAg9kHt6NwNJ6c-bczut5s_Z0BrcsGymTw8mQQ_LdDerDZuWh5GGhkf4hGz6tGTGC5gDb4GAN3vy8BaeYczK8czJyDWXJIshd_D_hHdPr4BNQLcO8GPv6Xqbn59AULSNJXi7R32_7eBTYLHL11PB2NUrWBnzY_AMVGqH8</recordid><startdate>200407</startdate><enddate>200407</enddate><creator>Han, Hyung‐Chul</creator><creator>Austin, Kathleen J.</creator><creator>Nathanielsz, Peter W.</creator><creator>Ford, Stephen P.</creator><creator>Nijland, Mark J.</creator><creator>Hansen, Thomas R.</creator><general>The Physiological Society</general><general>Blackwell Science Ltd</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200407</creationdate><title>Maternal nutrient restriction alters gene expression in the ovine fetal heart</title><author>Han, Hyung‐Chul ; Austin, Kathleen J. ; Nathanielsz, Peter W. ; Ford, Stephen P. ; Nijland, Mark J. ; Hansen, Thomas R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4851-e6dc50aa35211f876131a1db7b5a3a03a63432690ec3b0aa375b8caadf1c2b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Body Weight</topic><topic>Caloric Restriction</topic><topic>Female</topic><topic>Fetal Nutrition Disorders - genetics</topic><topic>Fetal Nutrition Disorders - pathology</topic><topic>Fetal Nutrition Disorders - physiopathology</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Library</topic><topic>Heart - embryology</topic><topic>Heart - physiology</topic><topic>Heart Ventricles - embryology</topic><topic>Heart Ventricles - pathology</topic><topic>Myocardium - pathology</topic><topic>Organ Size</topic><topic>Pregnancy</topic><topic>Research Papers</topic><topic>Sheep</topic><topic>Transcription, Genetic</topic><topic>Ventricular Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Hyung‐Chul</creatorcontrib><creatorcontrib>Austin, Kathleen J.</creatorcontrib><creatorcontrib>Nathanielsz, Peter W.</creatorcontrib><creatorcontrib>Ford, Stephen P.</creatorcontrib><creatorcontrib>Nijland, Mark J.</creatorcontrib><creatorcontrib>Hansen, Thomas R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Hyung‐Chul</au><au>Austin, Kathleen J.</au><au>Nathanielsz, Peter W.</au><au>Ford, Stephen P.</au><au>Nijland, Mark J.</au><au>Hansen, Thomas R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maternal nutrient restriction alters gene expression in the ovine fetal heart</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2004-07</date><risdate>2004</risdate><volume>558</volume><issue>1</issue><spage>111</spage><epage>121</epage><pages>111-121</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>Adequate maternal nutrient supply is critical for normal fetal organogenesis. We previously demonstrated that a global 50% nutrient restriction during the first half of gestation causes compensatory growth of both the left and right ventricles of the fetal heart by day 78 of gestation. Thus, it was hypothesized that maternal nutrient restriction significantly altered gene expression in the fetal cardiac left ventricle (LV). Pregnant ewes were randomly grouped into control (100% national research council (NRC) requirements) or nutrient-restricted groups (50% NRC requirements) from day 28 to day 78 of gestation, at which time fetal LV were collected. Fetal LV mRNA was used to construct a suppression subtraction cDNA library from which 11 cDNA clones were found by differential dot blot hybridization and virtual Northern analysis to be up-regulated by maternal nutrient restriction: caveolin, stathmin, G-1 cyclin, α-actin, titin, cardiac ankyrin repeat protein (CARP), cardiac-specific RNA-helicase activated by MEF2C (CHAMP), endothelial and smooth muscle derived neuropilin (ESDN), prostatic binding protein, NADH dehydrogenase subunit 2, and an unknown protein. Six of these clones (cardiac α-actin, cyclin G1, stathmin, NADH dehydrogenase subunit 2, titin and prostatic binding protein) have been linked to cardiac hypertrophy in other species including humans. Of the remaining clones, caveolin, CARP and CHAMP have been shown to inhibit remodelling of hypertrophic tissue. Compensatory growth of fetal LV in response to maternal undernutrition is concluded to be associated with increased transcription of genes related to cardiac hypertrophy, compensatory growth or remodelling. Counter-regulatory gene transcription may be increased, in part, as a response to moderating the degree of cardiac remodelling. The short- and long-term consequences of these changes in fetal heart gene expression and induction of specific homeostatic mechanisms in response to maternal undernutrition remain to be determined.</abstract><cop>9600 Garsington Road , Oxford , OX4 2DQ , UK</cop><pub>The Physiological Society</pub><pmid>15133065</pmid><doi>10.1113/jphysiol.2004.061697</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2004-07, Vol.558 (1), p.111-121
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1664914
source MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Body Weight
Caloric Restriction
Female
Fetal Nutrition Disorders - genetics
Fetal Nutrition Disorders - pathology
Fetal Nutrition Disorders - physiopathology
Gene Expression Profiling
Gene Expression Regulation, Developmental
Gene Library
Heart - embryology
Heart - physiology
Heart Ventricles - embryology
Heart Ventricles - pathology
Myocardium - pathology
Organ Size
Pregnancy
Research Papers
Sheep
Transcription, Genetic
Ventricular Function
title Maternal nutrient restriction alters gene expression in the ovine fetal heart
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maternal%20nutrient%20restriction%20alters%20gene%20expression%20in%20the%20ovine%20fetal%20heart&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Han,%20Hyung%E2%80%90Chul&rft.date=2004-07&rft.volume=558&rft.issue=1&rft.spage=111&rft.epage=121&rft.pages=111-121&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2004.061697&rft_dat=%3Cproquest_pubme%3E66666833%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66666833&rft_id=info:pmid/15133065&rfr_iscdi=true