Factors Modulating Conformational Equilibria in Large Modular Proteins: A Case Study with Cobalamin-Dependent Methionine Synthase
In the course of catalysis or signaling, large multimodular proteins often undergo conformational changes that reposition the modules with respect to one another. The mechanisms that direct the reorganization of modules in these proteins are of considerable importance, but distinguishing alternate c...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2003-07, Vol.100 (14), p.8156-8163 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8163 |
---|---|
container_issue | 14 |
container_start_page | 8156 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 100 |
creator | Bandarian, Vahe Ludwig, Martha L. Matthews, Rowena G. |
description | In the course of catalysis or signaling, large multimodular proteins often undergo conformational changes that reposition the modules with respect to one another. The mechanisms that direct the reorganization of modules in these proteins are of considerable importance, but distinguishing alternate conformations is a challenge. Cobalamin-dependent methionine synthase (MetH) is a 136-kDa multimodular enzyme with a cobalamin chromophore; the color of the cobalamin reflects the conformation of the protein. The enzyme contains four modules and catalyzes three different methyl transfer reactions that require different arrangements of these modules. Two of these methyl transfer reactions occur during turnover, when homocysteine is converted to methionine by using a methyl group derived from methyltetrahydrofolate. The third reaction is occasionally required for reactivation of the enzyme and uses S-adenosyl-L-methionine as the methyl donor. The absorbance properties of the cobalamin cofactor have been exploited to assign conformations of the protein and to probe the effect of ligands and mutations on the distribution of conformers. The results imply that the methylcobalamin form of MetH exists as an ensemble of interconverting conformational states. Differential binding of substrates or products alters the distribution of conformers. Furthermore, steric conflicts disfavor conformers that juxtapose a methyl group on substrate with one on methylcobalamin. These results suggest that the methylation state of the cobalamin will influence the distribution of conformers during turnover. |
doi_str_mv | 10.1073/pnas.1133218100 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_166199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3139897</jstor_id><sourcerecordid>3139897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-19a418bd14483fc21c88d17b18e6c8334c1d6585010e839d2ff371cdb53b63e3</originalsourceid><addsrcrecordid>eNp9kc9vFCEYhonR2LV69mKUePIyLR_MDzDx0KytNtlGE3snzMDsspmFLTCte_Q_l81OunrpiRCe98kbXoTeAjkD0rDzrVPxDIAxChwIeYZmQAQUdSnIczQjhDYFL2l5gl7FuCaEiIqTl-gEKGe0hmqG_lypLvkQ8Y3X46CSdUs89673YZMv3qkBX96NdrBtsApbhxcqLM1EB_wz-GSsi5_xBZ6raPCvNOodfrBplTWtGtTGuuKr2RqnjUv4xqRVtlqXyZ1Lqxx5jV70aojmzXSeotury9v592Lx49v1_GJRdKVgqQChSuCthrLkrO8odJxraFrgpu44Y2UHuq54RYAYzoSmfc8a6HRbsbZmhp2iLwftdmw3Rne5TVCD3Aa7UWEnvbLy_xdnV3Lp7yXUNQiR8x-nfPB3o4lJrv0Y8v9ESQkwUVFKMnR-gLrgYwymf_QDkfvB5H4weRwsJ97_W-vITwtl4MME7JNHXfaVkkNVZ-LT04Tsx2FI5nfK6LsDuo559EeW5f5cNOwvfeG1aA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201395220</pqid></control><display><type>article</type><title>Factors Modulating Conformational Equilibria in Large Modular Proteins: A Case Study with Cobalamin-Dependent Methionine Synthase</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bandarian, Vahe ; Ludwig, Martha L. ; Matthews, Rowena G.</creator><creatorcontrib>Bandarian, Vahe ; Ludwig, Martha L. ; Matthews, Rowena G.</creatorcontrib><description>In the course of catalysis or signaling, large multimodular proteins often undergo conformational changes that reposition the modules with respect to one another. The mechanisms that direct the reorganization of modules in these proteins are of considerable importance, but distinguishing alternate conformations is a challenge. Cobalamin-dependent methionine synthase (MetH) is a 136-kDa multimodular enzyme with a cobalamin chromophore; the color of the cobalamin reflects the conformation of the protein. The enzyme contains four modules and catalyzes three different methyl transfer reactions that require different arrangements of these modules. Two of these methyl transfer reactions occur during turnover, when homocysteine is converted to methionine by using a methyl group derived from methyltetrahydrofolate. The third reaction is occasionally required for reactivation of the enzyme and uses S-adenosyl-L-methionine as the methyl donor. The absorbance properties of the cobalamin cofactor have been exploited to assign conformations of the protein and to probe the effect of ligands and mutations on the distribution of conformers. The results imply that the methylcobalamin form of MetH exists as an ensemble of interconverting conformational states. Differential binding of substrates or products alters the distribution of conformers. Furthermore, steric conflicts disfavor conformers that juxtapose a methyl group on substrate with one on methylcobalamin. These results suggest that the methylation state of the cobalamin will influence the distribution of conformers during turnover.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1133218100</identifier><identifier>PMID: 12832615</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase - chemistry ; 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase - genetics ; Absorption spectra ; Amino Acid Substitution ; Biochemistry ; Biological Sciences ; Case studies ; Catalysis ; Cobalt ; Crystal structure ; Enzymes ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Homocysteine - metabolism ; Ligands ; Methionine - biosynthesis ; Methylation ; Mutation, Missense ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Proteins ; Recombinant Fusion Proteins - chemistry ; S-Adenosylmethionine - metabolism ; Spectrophotometry, Ultraviolet ; Structure-Activity Relationship ; Substrate Specificity ; Temperature ; Tetrahydrofolates - metabolism ; Vitamin B 12 - analogs & derivatives ; Vitamin B 12 - chemistry ; Wavelengths</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-07, Vol.100 (14), p.8156-8163</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 8, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-19a418bd14483fc21c88d17b18e6c8334c1d6585010e839d2ff371cdb53b63e3</citedby><cites>FETCH-LOGICAL-c493t-19a418bd14483fc21c88d17b18e6c8334c1d6585010e839d2ff371cdb53b63e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/14.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3139897$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3139897$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12832615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bandarian, Vahe</creatorcontrib><creatorcontrib>Ludwig, Martha L.</creatorcontrib><creatorcontrib>Matthews, Rowena G.</creatorcontrib><title>Factors Modulating Conformational Equilibria in Large Modular Proteins: A Case Study with Cobalamin-Dependent Methionine Synthase</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In the course of catalysis or signaling, large multimodular proteins often undergo conformational changes that reposition the modules with respect to one another. The mechanisms that direct the reorganization of modules in these proteins are of considerable importance, but distinguishing alternate conformations is a challenge. Cobalamin-dependent methionine synthase (MetH) is a 136-kDa multimodular enzyme with a cobalamin chromophore; the color of the cobalamin reflects the conformation of the protein. The enzyme contains four modules and catalyzes three different methyl transfer reactions that require different arrangements of these modules. Two of these methyl transfer reactions occur during turnover, when homocysteine is converted to methionine by using a methyl group derived from methyltetrahydrofolate. The third reaction is occasionally required for reactivation of the enzyme and uses S-adenosyl-L-methionine as the methyl donor. The absorbance properties of the cobalamin cofactor have been exploited to assign conformations of the protein and to probe the effect of ligands and mutations on the distribution of conformers. The results imply that the methylcobalamin form of MetH exists as an ensemble of interconverting conformational states. Differential binding of substrates or products alters the distribution of conformers. Furthermore, steric conflicts disfavor conformers that juxtapose a methyl group on substrate with one on methylcobalamin. These results suggest that the methylation state of the cobalamin will influence the distribution of conformers during turnover.</description><subject>5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase - chemistry</subject><subject>5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase - genetics</subject><subject>Absorption spectra</subject><subject>Amino Acid Substitution</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Case studies</subject><subject>Catalysis</subject><subject>Cobalt</subject><subject>Crystal structure</subject><subject>Enzymes</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Homocysteine - metabolism</subject><subject>Ligands</subject><subject>Methionine - biosynthesis</subject><subject>Methylation</subject><subject>Mutation, Missense</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>S-Adenosylmethionine - metabolism</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><subject>Temperature</subject><subject>Tetrahydrofolates - metabolism</subject><subject>Vitamin B 12 - analogs & derivatives</subject><subject>Vitamin B 12 - chemistry</subject><subject>Wavelengths</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9vFCEYhonR2LV69mKUePIyLR_MDzDx0KytNtlGE3snzMDsspmFLTCte_Q_l81OunrpiRCe98kbXoTeAjkD0rDzrVPxDIAxChwIeYZmQAQUdSnIczQjhDYFL2l5gl7FuCaEiIqTl-gEKGe0hmqG_lypLvkQ8Y3X46CSdUs89673YZMv3qkBX96NdrBtsApbhxcqLM1EB_wz-GSsi5_xBZ6raPCvNOodfrBplTWtGtTGuuKr2RqnjUv4xqRVtlqXyZ1Lqxx5jV70aojmzXSeotury9v592Lx49v1_GJRdKVgqQChSuCthrLkrO8odJxraFrgpu44Y2UHuq54RYAYzoSmfc8a6HRbsbZmhp2iLwftdmw3Rne5TVCD3Aa7UWEnvbLy_xdnV3Lp7yXUNQiR8x-nfPB3o4lJrv0Y8v9ESQkwUVFKMnR-gLrgYwymf_QDkfvB5H4weRwsJ97_W-vITwtl4MME7JNHXfaVkkNVZ-LT04Tsx2FI5nfK6LsDuo559EeW5f5cNOwvfeG1aA</recordid><startdate>20030708</startdate><enddate>20030708</enddate><creator>Bandarian, Vahe</creator><creator>Ludwig, Martha L.</creator><creator>Matthews, Rowena G.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20030708</creationdate><title>Factors Modulating Conformational Equilibria in Large Modular Proteins: A Case Study with Cobalamin-Dependent Methionine Synthase</title><author>Bandarian, Vahe ; Ludwig, Martha L. ; Matthews, Rowena G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-19a418bd14483fc21c88d17b18e6c8334c1d6585010e839d2ff371cdb53b63e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase - chemistry</topic><topic>5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase - genetics</topic><topic>Absorption spectra</topic><topic>Amino Acid Substitution</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Case studies</topic><topic>Catalysis</topic><topic>Cobalt</topic><topic>Crystal structure</topic><topic>Enzymes</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Homocysteine - metabolism</topic><topic>Ligands</topic><topic>Methionine - biosynthesis</topic><topic>Methylation</topic><topic>Mutation, Missense</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>S-Adenosylmethionine - metabolism</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><topic>Temperature</topic><topic>Tetrahydrofolates - metabolism</topic><topic>Vitamin B 12 - analogs & derivatives</topic><topic>Vitamin B 12 - chemistry</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandarian, Vahe</creatorcontrib><creatorcontrib>Ludwig, Martha L.</creatorcontrib><creatorcontrib>Matthews, Rowena G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandarian, Vahe</au><au>Ludwig, Martha L.</au><au>Matthews, Rowena G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factors Modulating Conformational Equilibria in Large Modular Proteins: A Case Study with Cobalamin-Dependent Methionine Synthase</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-07-08</date><risdate>2003</risdate><volume>100</volume><issue>14</issue><spage>8156</spage><epage>8163</epage><pages>8156-8163</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In the course of catalysis or signaling, large multimodular proteins often undergo conformational changes that reposition the modules with respect to one another. The mechanisms that direct the reorganization of modules in these proteins are of considerable importance, but distinguishing alternate conformations is a challenge. Cobalamin-dependent methionine synthase (MetH) is a 136-kDa multimodular enzyme with a cobalamin chromophore; the color of the cobalamin reflects the conformation of the protein. The enzyme contains four modules and catalyzes three different methyl transfer reactions that require different arrangements of these modules. Two of these methyl transfer reactions occur during turnover, when homocysteine is converted to methionine by using a methyl group derived from methyltetrahydrofolate. The third reaction is occasionally required for reactivation of the enzyme and uses S-adenosyl-L-methionine as the methyl donor. The absorbance properties of the cobalamin cofactor have been exploited to assign conformations of the protein and to probe the effect of ligands and mutations on the distribution of conformers. The results imply that the methylcobalamin form of MetH exists as an ensemble of interconverting conformational states. Differential binding of substrates or products alters the distribution of conformers. Furthermore, steric conflicts disfavor conformers that juxtapose a methyl group on substrate with one on methylcobalamin. These results suggest that the methylation state of the cobalamin will influence the distribution of conformers during turnover.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12832615</pmid><doi>10.1073/pnas.1133218100</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2003-07, Vol.100 (14), p.8156-8163 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_166199 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase - chemistry 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase - genetics Absorption spectra Amino Acid Substitution Biochemistry Biological Sciences Case studies Catalysis Cobalt Crystal structure Enzymes Escherichia coli - enzymology Escherichia coli - genetics Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Homocysteine - metabolism Ligands Methionine - biosynthesis Methylation Mutation, Missense Protein Binding Protein Conformation Protein Structure, Tertiary Proteins Recombinant Fusion Proteins - chemistry S-Adenosylmethionine - metabolism Spectrophotometry, Ultraviolet Structure-Activity Relationship Substrate Specificity Temperature Tetrahydrofolates - metabolism Vitamin B 12 - analogs & derivatives Vitamin B 12 - chemistry Wavelengths |
title | Factors Modulating Conformational Equilibria in Large Modular Proteins: A Case Study with Cobalamin-Dependent Methionine Synthase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factors%20Modulating%20Conformational%20Equilibria%20in%20Large%20Modular%20Proteins:%20A%20Case%20Study%20with%20Cobalamin-Dependent%20Methionine%20Synthase&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bandarian,%20Vahe&rft.date=2003-07-08&rft.volume=100&rft.issue=14&rft.spage=8156&rft.epage=8163&rft.pages=8156-8163&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1133218100&rft_dat=%3Cjstor_pubme%3E3139897%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201395220&rft_id=info:pmid/12832615&rft_jstor_id=3139897&rfr_iscdi=true |