PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription

Maintaining muscle size and fiber composition requires contractile activity. Increased activity stimulates expression of the transcriptional coactivator PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α), which promotes fiber-type switching from glycolytic toward more oxidative fib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-10, Vol.103 (44), p.16260-16265
Hauptverfasser: Sandri, Marco, Lin, Jiandie, Handschin, Christoph, Yang, Wenli, Arany, Zoltan P., Lecker, Stewart H., Goldberg, Alfred L., Spiegelman, Bruce M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16265
container_issue 44
container_start_page 16260
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Sandri, Marco
Lin, Jiandie
Handschin, Christoph
Yang, Wenli
Arany, Zoltan P.
Lecker, Stewart H.
Goldberg, Alfred L.
Spiegelman, Bruce M.
description Maintaining muscle size and fiber composition requires contractile activity. Increased activity stimulates expression of the transcriptional coactivator PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α), which promotes fiber-type switching from glycolytic toward more oxidative fibers. In response to disuse or denervation, but also in fasting and many systemic diseases, muscles undergo marked atrophy through a common set of transcriptional changes. FoxO family transcription factors play a critical role in this loss of cell protein, and when activated, FoxO3 causes expression of the atrophy-related ubiquitin ligases atrogin-1 and MuRF-1 and profound loss of muscle mass. To understand how exercise might retard muscle atrophy, we investigated the possible interplay between PGC-1α and the FoxO family in regulation of muscle size. Rodent muscles showed a large decrease in PGC-1α mRNA during atrophy induced by denervation as well as by cancer cachexia, diabetes, and renal failure. Furthermore, in transgenic mice overexpressing PGC-1α, denervation and fasting caused a much smaller decrease in muscle fiber diameter and a smaller induction of atrogin-1 and MuRF-1 than in control mice. Increased expression of PGC-1α also increased mRNA for several genes involved in energy metabolism whose expression decreases during atrophy. Transfection of PGC-1α into adult fibers reduced the capacity of FoxO3 to cause fiber atrophy and to bind to and transcribe from the atrogin-1 promoter. Thus, the high levels of PGC-1α in dark and exercising muscles can explain their resistance to atrophy, and the rapid fall in PGC-1α during atrophy should enhance the FoxO-dependent loss of muscle mass. denervation fasting muscle fiber energy metabolism mitochondria
doi_str_mv 10.1073/pnas.0607795103
format Article
fullrecord <record><control><sourceid>pnas_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1637570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>103_44_16260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3113-70d839431422b52ae2b14a62a4be87b957e4970f87f84b228972223dd5c9b80f3</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EoqUws3plSHv9kzhekFBFC1KlMsBsOY7TBtLE2ClqH4sX4ZlI1ULFxHSHe75zrz6ErgkMCQg2crUOQ0hACBkTYCeoT0CSKOESTlEfgIoo5ZT30EUIrwAg4xTOUY8IiBkkoo_en6bjiHx9Yueb1po24PBmK9vqCq_WwVQWF75ZYd36xi23ONvisHbO2xDKeoEnzWbOsDZt2dRY1_kPFwVnTVmUBi9sbXHrdR2ML92Ou0Rnha6CvTrMAXqZ3D-PH6LZfPo4vptFhhHCIgF5yiRnhFOaxVRbmhGuE6p5ZlORyVhYLgUUqShSnlGaSkEpZXkeG5mlULABut173Tpb2dzYunujUs6XK-23qtGl-rupy6VaNB-KJEzEAjrBaC8wvgnB2-I3S0Dt2le79tWx_S5xczi5WxxppjjvtDQBVayrqrWbtmPxPyz7Br6SklA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sandri, Marco ; Lin, Jiandie ; Handschin, Christoph ; Yang, Wenli ; Arany, Zoltan P. ; Lecker, Stewart H. ; Goldberg, Alfred L. ; Spiegelman, Bruce M.</creator><creatorcontrib>Sandri, Marco ; Lin, Jiandie ; Handschin, Christoph ; Yang, Wenli ; Arany, Zoltan P. ; Lecker, Stewart H. ; Goldberg, Alfred L. ; Spiegelman, Bruce M.</creatorcontrib><description>Maintaining muscle size and fiber composition requires contractile activity. Increased activity stimulates expression of the transcriptional coactivator PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α), which promotes fiber-type switching from glycolytic toward more oxidative fibers. In response to disuse or denervation, but also in fasting and many systemic diseases, muscles undergo marked atrophy through a common set of transcriptional changes. FoxO family transcription factors play a critical role in this loss of cell protein, and when activated, FoxO3 causes expression of the atrophy-related ubiquitin ligases atrogin-1 and MuRF-1 and profound loss of muscle mass. To understand how exercise might retard muscle atrophy, we investigated the possible interplay between PGC-1α and the FoxO family in regulation of muscle size. Rodent muscles showed a large decrease in PGC-1α mRNA during atrophy induced by denervation as well as by cancer cachexia, diabetes, and renal failure. Furthermore, in transgenic mice overexpressing PGC-1α, denervation and fasting caused a much smaller decrease in muscle fiber diameter and a smaller induction of atrogin-1 and MuRF-1 than in control mice. Increased expression of PGC-1α also increased mRNA for several genes involved in energy metabolism whose expression decreases during atrophy. Transfection of PGC-1α into adult fibers reduced the capacity of FoxO3 to cause fiber atrophy and to bind to and transcribe from the atrogin-1 promoter. Thus, the high levels of PGC-1α in dark and exercising muscles can explain their resistance to atrophy, and the rapid fall in PGC-1α during atrophy should enhance the FoxO-dependent loss of muscle mass. denervation fasting muscle fiber energy metabolism mitochondria</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0607795103</identifier><identifier>PMID: 17053067</identifier><language>eng</language><publisher>National Acad Sciences</publisher><subject>Biological Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-10, Vol.103 (44), p.16260-16265</ispartof><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3113-70d839431422b52ae2b14a62a4be87b957e4970f87f84b228972223dd5c9b80f3</citedby><cites>FETCH-LOGICAL-c3113-70d839431422b52ae2b14a62a4be87b957e4970f87f84b228972223dd5c9b80f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/44.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637570/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637570/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Sandri, Marco</creatorcontrib><creatorcontrib>Lin, Jiandie</creatorcontrib><creatorcontrib>Handschin, Christoph</creatorcontrib><creatorcontrib>Yang, Wenli</creatorcontrib><creatorcontrib>Arany, Zoltan P.</creatorcontrib><creatorcontrib>Lecker, Stewart H.</creatorcontrib><creatorcontrib>Goldberg, Alfred L.</creatorcontrib><creatorcontrib>Spiegelman, Bruce M.</creatorcontrib><title>PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Maintaining muscle size and fiber composition requires contractile activity. Increased activity stimulates expression of the transcriptional coactivator PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α), which promotes fiber-type switching from glycolytic toward more oxidative fibers. In response to disuse or denervation, but also in fasting and many systemic diseases, muscles undergo marked atrophy through a common set of transcriptional changes. FoxO family transcription factors play a critical role in this loss of cell protein, and when activated, FoxO3 causes expression of the atrophy-related ubiquitin ligases atrogin-1 and MuRF-1 and profound loss of muscle mass. To understand how exercise might retard muscle atrophy, we investigated the possible interplay between PGC-1α and the FoxO family in regulation of muscle size. Rodent muscles showed a large decrease in PGC-1α mRNA during atrophy induced by denervation as well as by cancer cachexia, diabetes, and renal failure. Furthermore, in transgenic mice overexpressing PGC-1α, denervation and fasting caused a much smaller decrease in muscle fiber diameter and a smaller induction of atrogin-1 and MuRF-1 than in control mice. Increased expression of PGC-1α also increased mRNA for several genes involved in energy metabolism whose expression decreases during atrophy. Transfection of PGC-1α into adult fibers reduced the capacity of FoxO3 to cause fiber atrophy and to bind to and transcribe from the atrogin-1 promoter. Thus, the high levels of PGC-1α in dark and exercising muscles can explain their resistance to atrophy, and the rapid fall in PGC-1α during atrophy should enhance the FoxO-dependent loss of muscle mass. denervation fasting muscle fiber energy metabolism mitochondria</description><subject>Biological Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EoqUws3plSHv9kzhekFBFC1KlMsBsOY7TBtLE2ClqH4sX4ZlI1ULFxHSHe75zrz6ErgkMCQg2crUOQ0hACBkTYCeoT0CSKOESTlEfgIoo5ZT30EUIrwAg4xTOUY8IiBkkoo_en6bjiHx9Yueb1po24PBmK9vqCq_WwVQWF75ZYd36xi23ONvisHbO2xDKeoEnzWbOsDZt2dRY1_kPFwVnTVmUBi9sbXHrdR2ML92Ou0Rnha6CvTrMAXqZ3D-PH6LZfPo4vptFhhHCIgF5yiRnhFOaxVRbmhGuE6p5ZlORyVhYLgUUqShSnlGaSkEpZXkeG5mlULABut173Tpb2dzYunujUs6XK-23qtGl-rupy6VaNB-KJEzEAjrBaC8wvgnB2-I3S0Dt2le79tWx_S5xczi5WxxppjjvtDQBVayrqrWbtmPxPyz7Br6SklA</recordid><startdate>20061031</startdate><enddate>20061031</enddate><creator>Sandri, Marco</creator><creator>Lin, Jiandie</creator><creator>Handschin, Christoph</creator><creator>Yang, Wenli</creator><creator>Arany, Zoltan P.</creator><creator>Lecker, Stewart H.</creator><creator>Goldberg, Alfred L.</creator><creator>Spiegelman, Bruce M.</creator><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20061031</creationdate><title>PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription</title><author>Sandri, Marco ; Lin, Jiandie ; Handschin, Christoph ; Yang, Wenli ; Arany, Zoltan P. ; Lecker, Stewart H. ; Goldberg, Alfred L. ; Spiegelman, Bruce M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3113-70d839431422b52ae2b14a62a4be87b957e4970f87f84b228972223dd5c9b80f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biological Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandri, Marco</creatorcontrib><creatorcontrib>Lin, Jiandie</creatorcontrib><creatorcontrib>Handschin, Christoph</creatorcontrib><creatorcontrib>Yang, Wenli</creatorcontrib><creatorcontrib>Arany, Zoltan P.</creatorcontrib><creatorcontrib>Lecker, Stewart H.</creatorcontrib><creatorcontrib>Goldberg, Alfred L.</creatorcontrib><creatorcontrib>Spiegelman, Bruce M.</creatorcontrib><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandri, Marco</au><au>Lin, Jiandie</au><au>Handschin, Christoph</au><au>Yang, Wenli</au><au>Arany, Zoltan P.</au><au>Lecker, Stewart H.</au><au>Goldberg, Alfred L.</au><au>Spiegelman, Bruce M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2006-10-31</date><risdate>2006</risdate><volume>103</volume><issue>44</issue><spage>16260</spage><epage>16265</epage><pages>16260-16265</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Maintaining muscle size and fiber composition requires contractile activity. Increased activity stimulates expression of the transcriptional coactivator PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α), which promotes fiber-type switching from glycolytic toward more oxidative fibers. In response to disuse or denervation, but also in fasting and many systemic diseases, muscles undergo marked atrophy through a common set of transcriptional changes. FoxO family transcription factors play a critical role in this loss of cell protein, and when activated, FoxO3 causes expression of the atrophy-related ubiquitin ligases atrogin-1 and MuRF-1 and profound loss of muscle mass. To understand how exercise might retard muscle atrophy, we investigated the possible interplay between PGC-1α and the FoxO family in regulation of muscle size. Rodent muscles showed a large decrease in PGC-1α mRNA during atrophy induced by denervation as well as by cancer cachexia, diabetes, and renal failure. Furthermore, in transgenic mice overexpressing PGC-1α, denervation and fasting caused a much smaller decrease in muscle fiber diameter and a smaller induction of atrogin-1 and MuRF-1 than in control mice. Increased expression of PGC-1α also increased mRNA for several genes involved in energy metabolism whose expression decreases during atrophy. Transfection of PGC-1α into adult fibers reduced the capacity of FoxO3 to cause fiber atrophy and to bind to and transcribe from the atrogin-1 promoter. Thus, the high levels of PGC-1α in dark and exercising muscles can explain their resistance to atrophy, and the rapid fall in PGC-1α during atrophy should enhance the FoxO-dependent loss of muscle mass. denervation fasting muscle fiber energy metabolism mitochondria</abstract><pub>National Acad Sciences</pub><pmid>17053067</pmid><doi>10.1073/pnas.0607795103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-10, Vol.103 (44), p.16260-16265
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1637570
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
title PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pnas_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PGC-1%CE%B1%20protects%20skeletal%20muscle%20from%20atrophy%20by%20suppressing%20FoxO3%20action%20and%20atrophy-specific%20gene%20transcription&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sandri,%20Marco&rft.date=2006-10-31&rft.volume=103&rft.issue=44&rft.spage=16260&rft.epage=16265&rft.pages=16260-16265&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0607795103&rft_dat=%3Cpnas_pubme%3E103_44_16260%3C/pnas_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/17053067&rfr_iscdi=true