DNA biochip for on-the-spot multiplexed pathogen identification
Miniaturized integrated DNA analysis systems have largely been based on a multi-chamber design with microfluidic control to process the sample sequentially from one module to another. This microchip design in connection with optics involved hinders the deployment of this technology for point-of-care...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2006-10, Vol.34 (18), p.e118-e118 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e118 |
---|---|
container_issue | 18 |
container_start_page | e118 |
container_title | Nucleic acids research |
container_volume | 34 |
creator | Yeung, Siu-Wai Lee, Thomas Ming-Hung Cai, Hong Hsing, I. Ming |
description | Miniaturized integrated DNA analysis systems have largely been based on a multi-chamber design with microfluidic control to process the sample sequentially from one module to another. This microchip design in connection with optics involved hinders the deployment of this technology for point-of-care applications. In this work, we demonstrate the implementation of sample preparation, DNA amplification, and electrochemical detection in a single silicon and glass-based microchamber and its application for the multiplexed detection of Escherichia coli and Bacillus subtilis cells. The microdevice has a thin-film heater and temperature sensor patterned on the silicon substrate. An array of indium tin oxide (ITO) electrodes was constructed within the microchamber as the transduction element. Oligonucleotide probes specific to the target amplicons are individually positioned at each ITO surface by electrochemical copolymerization of pyrrole and pyrrole-probe conjugate. These immobilized probes were stable to the thermal cycling process and were highly selective. The DNA-based identification of the two model pathogens involved a number of steps including a thermal lysis step, magnetic particle-based isolation of the target genomes, asymmetric PCR, and electrochemical sequence-specific detection using silver-enhanced gold nanoparticles. The microchamber platform described here offers a cost-effective and sample-to-answer technology for on-site monitoring of multiple pathogens. |
doi_str_mv | 10.1093/nar/gkl702 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1636451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19781610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-6dc76f0bd2b34ab4648d0d53778c84c8a1432cfbe0614b6c5a360ca9e02724f13</originalsourceid><addsrcrecordid>eNqF0c1O3DAUBWALUcFAu-EBIOqCRaWUe23HcTYgBJRWQu2iZW05jjNjyMTBTqry9ng0o_KzYeO78Kcr-xxCDhC-IlTspNfhZH7flUC3yAyZoDmvBN0mM2BQ5Ahc7pK9GO8AkGPBd8gulgAgmJyRs8uf51ntvFm4IWt9yHyfjwubx8GP2XLqRjd09p9tskGPCz-3feYa24-udUaPzvcfyYdWd9F-2sx9cvvt6s_F9_zm1_WPi_Ob3HBZjbloTClaqBtaM65rLrhsoClYWUojuZEaOaOmrS0I5LUwhWYCjK4s0JLyFtk-OV3vHaZ6aRuT3hB0p4bgljo8Kq-den3Tu4Wa-78KBRO8WC043iwI_mGycVRLF43tOt1bP0UlZMqSyvchRcpoku9CrEqJAiHBz2_gnZ9Cn-JSNNUgGZM8oS9rZIKPMdj2_98Q1KpmlWpW65oTPnyZxjPd9JrA0Rq02is9Dy6q298UkAHi6ijYEwvRrKk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200683384</pqid></control><display><type>article</type><title>DNA biochip for on-the-spot multiplexed pathogen identification</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yeung, Siu-Wai ; Lee, Thomas Ming-Hung ; Cai, Hong ; Hsing, I. Ming</creator><creatorcontrib>Yeung, Siu-Wai ; Lee, Thomas Ming-Hung ; Cai, Hong ; Hsing, I. Ming</creatorcontrib><description>Miniaturized integrated DNA analysis systems have largely been based on a multi-chamber design with microfluidic control to process the sample sequentially from one module to another. This microchip design in connection with optics involved hinders the deployment of this technology for point-of-care applications. In this work, we demonstrate the implementation of sample preparation, DNA amplification, and electrochemical detection in a single silicon and glass-based microchamber and its application for the multiplexed detection of Escherichia coli and Bacillus subtilis cells. The microdevice has a thin-film heater and temperature sensor patterned on the silicon substrate. An array of indium tin oxide (ITO) electrodes was constructed within the microchamber as the transduction element. Oligonucleotide probes specific to the target amplicons are individually positioned at each ITO surface by electrochemical copolymerization of pyrrole and pyrrole-probe conjugate. These immobilized probes were stable to the thermal cycling process and were highly selective. The DNA-based identification of the two model pathogens involved a number of steps including a thermal lysis step, magnetic particle-based isolation of the target genomes, asymmetric PCR, and electrochemical sequence-specific detection using silver-enhanced gold nanoparticles. The microchamber platform described here offers a cost-effective and sample-to-answer technology for on-site monitoring of multiple pathogens.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkl702</identifier><identifier>PMID: 17000638</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford Publishing Limited (England)</publisher><subject>Bacillus subtilis ; Bacillus subtilis - genetics ; Bacillus subtilis - isolation & purification ; Bacteria - isolation & purification ; DNA, Bacterial - analysis ; Electrodes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - isolation & purification ; Glass - chemistry ; Gold - chemistry ; Methods Online ; Nanoparticles - chemistry ; Oligonucleotide Array Sequence Analysis - instrumentation ; Oligonucleotide Array Sequence Analysis - methods ; Oligonucleotide Probes ; Point-of-Care Systems ; Polymerase Chain Reaction ; Silicon - chemistry</subject><ispartof>Nucleic acids research, 2006-10, Vol.34 (18), p.e118-e118</ispartof><rights>Copyright Oxford University Press(England) Oct 15, 2006</rights><rights>2006 The Author(s) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-6dc76f0bd2b34ab4648d0d53778c84c8a1432cfbe0614b6c5a360ca9e02724f13</citedby><cites>FETCH-LOGICAL-c489t-6dc76f0bd2b34ab4648d0d53778c84c8a1432cfbe0614b6c5a360ca9e02724f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636451/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636451/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17000638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeung, Siu-Wai</creatorcontrib><creatorcontrib>Lee, Thomas Ming-Hung</creatorcontrib><creatorcontrib>Cai, Hong</creatorcontrib><creatorcontrib>Hsing, I. Ming</creatorcontrib><title>DNA biochip for on-the-spot multiplexed pathogen identification</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Miniaturized integrated DNA analysis systems have largely been based on a multi-chamber design with microfluidic control to process the sample sequentially from one module to another. This microchip design in connection with optics involved hinders the deployment of this technology for point-of-care applications. In this work, we demonstrate the implementation of sample preparation, DNA amplification, and electrochemical detection in a single silicon and glass-based microchamber and its application for the multiplexed detection of Escherichia coli and Bacillus subtilis cells. The microdevice has a thin-film heater and temperature sensor patterned on the silicon substrate. An array of indium tin oxide (ITO) electrodes was constructed within the microchamber as the transduction element. Oligonucleotide probes specific to the target amplicons are individually positioned at each ITO surface by electrochemical copolymerization of pyrrole and pyrrole-probe conjugate. These immobilized probes were stable to the thermal cycling process and were highly selective. The DNA-based identification of the two model pathogens involved a number of steps including a thermal lysis step, magnetic particle-based isolation of the target genomes, asymmetric PCR, and electrochemical sequence-specific detection using silver-enhanced gold nanoparticles. The microchamber platform described here offers a cost-effective and sample-to-answer technology for on-site monitoring of multiple pathogens.</description><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - isolation & purification</subject><subject>Bacteria - isolation & purification</subject><subject>DNA, Bacterial - analysis</subject><subject>Electrodes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - isolation & purification</subject><subject>Glass - chemistry</subject><subject>Gold - chemistry</subject><subject>Methods Online</subject><subject>Nanoparticles - chemistry</subject><subject>Oligonucleotide Array Sequence Analysis - instrumentation</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Oligonucleotide Probes</subject><subject>Point-of-Care Systems</subject><subject>Polymerase Chain Reaction</subject><subject>Silicon - chemistry</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1O3DAUBWALUcFAu-EBIOqCRaWUe23HcTYgBJRWQu2iZW05jjNjyMTBTqry9ng0o_KzYeO78Kcr-xxCDhC-IlTspNfhZH7flUC3yAyZoDmvBN0mM2BQ5Ahc7pK9GO8AkGPBd8gulgAgmJyRs8uf51ntvFm4IWt9yHyfjwubx8GP2XLqRjd09p9tskGPCz-3feYa24-udUaPzvcfyYdWd9F-2sx9cvvt6s_F9_zm1_WPi_Ob3HBZjbloTClaqBtaM65rLrhsoClYWUojuZEaOaOmrS0I5LUwhWYCjK4s0JLyFtk-OV3vHaZ6aRuT3hB0p4bgljo8Kq-den3Tu4Wa-78KBRO8WC043iwI_mGycVRLF43tOt1bP0UlZMqSyvchRcpoku9CrEqJAiHBz2_gnZ9Cn-JSNNUgGZM8oS9rZIKPMdj2_98Q1KpmlWpW65oTPnyZxjPd9JrA0Rq02is9Dy6q298UkAHi6ijYEwvRrKk</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Yeung, Siu-Wai</creator><creator>Lee, Thomas Ming-Hung</creator><creator>Cai, Hong</creator><creator>Hsing, I. Ming</creator><general>Oxford Publishing Limited (England)</general><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061001</creationdate><title>DNA biochip for on-the-spot multiplexed pathogen identification</title><author>Yeung, Siu-Wai ; Lee, Thomas Ming-Hung ; Cai, Hong ; Hsing, I. Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-6dc76f0bd2b34ab4648d0d53778c84c8a1432cfbe0614b6c5a360ca9e02724f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - isolation & purification</topic><topic>Bacteria - isolation & purification</topic><topic>DNA, Bacterial - analysis</topic><topic>Electrodes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - isolation & purification</topic><topic>Glass - chemistry</topic><topic>Gold - chemistry</topic><topic>Methods Online</topic><topic>Nanoparticles - chemistry</topic><topic>Oligonucleotide Array Sequence Analysis - instrumentation</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Oligonucleotide Probes</topic><topic>Point-of-Care Systems</topic><topic>Polymerase Chain Reaction</topic><topic>Silicon - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeung, Siu-Wai</creatorcontrib><creatorcontrib>Lee, Thomas Ming-Hung</creatorcontrib><creatorcontrib>Cai, Hong</creatorcontrib><creatorcontrib>Hsing, I. Ming</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeung, Siu-Wai</au><au>Lee, Thomas Ming-Hung</au><au>Cai, Hong</au><au>Hsing, I. Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA biochip for on-the-spot multiplexed pathogen identification</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2006-10-01</date><risdate>2006</risdate><volume>34</volume><issue>18</issue><spage>e118</spage><epage>e118</epage><pages>e118-e118</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Miniaturized integrated DNA analysis systems have largely been based on a multi-chamber design with microfluidic control to process the sample sequentially from one module to another. This microchip design in connection with optics involved hinders the deployment of this technology for point-of-care applications. In this work, we demonstrate the implementation of sample preparation, DNA amplification, and electrochemical detection in a single silicon and glass-based microchamber and its application for the multiplexed detection of Escherichia coli and Bacillus subtilis cells. The microdevice has a thin-film heater and temperature sensor patterned on the silicon substrate. An array of indium tin oxide (ITO) electrodes was constructed within the microchamber as the transduction element. Oligonucleotide probes specific to the target amplicons are individually positioned at each ITO surface by electrochemical copolymerization of pyrrole and pyrrole-probe conjugate. These immobilized probes were stable to the thermal cycling process and were highly selective. The DNA-based identification of the two model pathogens involved a number of steps including a thermal lysis step, magnetic particle-based isolation of the target genomes, asymmetric PCR, and electrochemical sequence-specific detection using silver-enhanced gold nanoparticles. The microchamber platform described here offers a cost-effective and sample-to-answer technology for on-site monitoring of multiple pathogens.</abstract><cop>England</cop><pub>Oxford Publishing Limited (England)</pub><pmid>17000638</pmid><doi>10.1093/nar/gkl702</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2006-10, Vol.34 (18), p.e118-e118 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1636451 |
source | Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Bacillus subtilis Bacillus subtilis - genetics Bacillus subtilis - isolation & purification Bacteria - isolation & purification DNA, Bacterial - analysis Electrodes Escherichia coli Escherichia coli - genetics Escherichia coli - isolation & purification Glass - chemistry Gold - chemistry Methods Online Nanoparticles - chemistry Oligonucleotide Array Sequence Analysis - instrumentation Oligonucleotide Array Sequence Analysis - methods Oligonucleotide Probes Point-of-Care Systems Polymerase Chain Reaction Silicon - chemistry |
title | DNA biochip for on-the-spot multiplexed pathogen identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T13%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20biochip%20for%20on-the-spot%20multiplexed%20pathogen%20identification&rft.jtitle=Nucleic%20acids%20research&rft.au=Yeung,%20Siu-Wai&rft.date=2006-10-01&rft.volume=34&rft.issue=18&rft.spage=e118&rft.epage=e118&rft.pages=e118-e118&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkl702&rft_dat=%3Cproquest_pubme%3E19781610%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200683384&rft_id=info:pmid/17000638&rfr_iscdi=true |