DNA biochip for on-the-spot multiplexed pathogen identification

Miniaturized integrated DNA analysis systems have largely been based on a multi-chamber design with microfluidic control to process the sample sequentially from one module to another. This microchip design in connection with optics involved hinders the deployment of this technology for point-of-care...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2006-10, Vol.34 (18), p.e118-e118
Hauptverfasser: Yeung, Siu-Wai, Lee, Thomas Ming-Hung, Cai, Hong, Hsing, I. Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e118
container_issue 18
container_start_page e118
container_title Nucleic acids research
container_volume 34
creator Yeung, Siu-Wai
Lee, Thomas Ming-Hung
Cai, Hong
Hsing, I. Ming
description Miniaturized integrated DNA analysis systems have largely been based on a multi-chamber design with microfluidic control to process the sample sequentially from one module to another. This microchip design in connection with optics involved hinders the deployment of this technology for point-of-care applications. In this work, we demonstrate the implementation of sample preparation, DNA amplification, and electrochemical detection in a single silicon and glass-based microchamber and its application for the multiplexed detection of Escherichia coli and Bacillus subtilis cells. The microdevice has a thin-film heater and temperature sensor patterned on the silicon substrate. An array of indium tin oxide (ITO) electrodes was constructed within the microchamber as the transduction element. Oligonucleotide probes specific to the target amplicons are individually positioned at each ITO surface by electrochemical copolymerization of pyrrole and pyrrole-probe conjugate. These immobilized probes were stable to the thermal cycling process and were highly selective. The DNA-based identification of the two model pathogens involved a number of steps including a thermal lysis step, magnetic particle-based isolation of the target genomes, asymmetric PCR, and electrochemical sequence-specific detection using silver-enhanced gold nanoparticles. The microchamber platform described here offers a cost-effective and sample-to-answer technology for on-site monitoring of multiple pathogens.
doi_str_mv 10.1093/nar/gkl702
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1636451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19781610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-6dc76f0bd2b34ab4648d0d53778c84c8a1432cfbe0614b6c5a360ca9e02724f13</originalsourceid><addsrcrecordid>eNqF0c1O3DAUBWALUcFAu-EBIOqCRaWUe23HcTYgBJRWQu2iZW05jjNjyMTBTqry9ng0o_KzYeO78Kcr-xxCDhC-IlTspNfhZH7flUC3yAyZoDmvBN0mM2BQ5Ahc7pK9GO8AkGPBd8gulgAgmJyRs8uf51ntvFm4IWt9yHyfjwubx8GP2XLqRjd09p9tskGPCz-3feYa24-udUaPzvcfyYdWd9F-2sx9cvvt6s_F9_zm1_WPi_Ob3HBZjbloTClaqBtaM65rLrhsoClYWUojuZEaOaOmrS0I5LUwhWYCjK4s0JLyFtk-OV3vHaZ6aRuT3hB0p4bgljo8Kq-den3Tu4Wa-78KBRO8WC043iwI_mGycVRLF43tOt1bP0UlZMqSyvchRcpoku9CrEqJAiHBz2_gnZ9Cn-JSNNUgGZM8oS9rZIKPMdj2_98Q1KpmlWpW65oTPnyZxjPd9JrA0Rq02is9Dy6q298UkAHi6ijYEwvRrKk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200683384</pqid></control><display><type>article</type><title>DNA biochip for on-the-spot multiplexed pathogen identification</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yeung, Siu-Wai ; Lee, Thomas Ming-Hung ; Cai, Hong ; Hsing, I. Ming</creator><creatorcontrib>Yeung, Siu-Wai ; Lee, Thomas Ming-Hung ; Cai, Hong ; Hsing, I. Ming</creatorcontrib><description>Miniaturized integrated DNA analysis systems have largely been based on a multi-chamber design with microfluidic control to process the sample sequentially from one module to another. This microchip design in connection with optics involved hinders the deployment of this technology for point-of-care applications. In this work, we demonstrate the implementation of sample preparation, DNA amplification, and electrochemical detection in a single silicon and glass-based microchamber and its application for the multiplexed detection of Escherichia coli and Bacillus subtilis cells. The microdevice has a thin-film heater and temperature sensor patterned on the silicon substrate. An array of indium tin oxide (ITO) electrodes was constructed within the microchamber as the transduction element. Oligonucleotide probes specific to the target amplicons are individually positioned at each ITO surface by electrochemical copolymerization of pyrrole and pyrrole-probe conjugate. These immobilized probes were stable to the thermal cycling process and were highly selective. The DNA-based identification of the two model pathogens involved a number of steps including a thermal lysis step, magnetic particle-based isolation of the target genomes, asymmetric PCR, and electrochemical sequence-specific detection using silver-enhanced gold nanoparticles. The microchamber platform described here offers a cost-effective and sample-to-answer technology for on-site monitoring of multiple pathogens.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkl702</identifier><identifier>PMID: 17000638</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford Publishing Limited (England)</publisher><subject>Bacillus subtilis ; Bacillus subtilis - genetics ; Bacillus subtilis - isolation &amp; purification ; Bacteria - isolation &amp; purification ; DNA, Bacterial - analysis ; Electrodes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - isolation &amp; purification ; Glass - chemistry ; Gold - chemistry ; Methods Online ; Nanoparticles - chemistry ; Oligonucleotide Array Sequence Analysis - instrumentation ; Oligonucleotide Array Sequence Analysis - methods ; Oligonucleotide Probes ; Point-of-Care Systems ; Polymerase Chain Reaction ; Silicon - chemistry</subject><ispartof>Nucleic acids research, 2006-10, Vol.34 (18), p.e118-e118</ispartof><rights>Copyright Oxford University Press(England) Oct 15, 2006</rights><rights>2006 The Author(s) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-6dc76f0bd2b34ab4648d0d53778c84c8a1432cfbe0614b6c5a360ca9e02724f13</citedby><cites>FETCH-LOGICAL-c489t-6dc76f0bd2b34ab4648d0d53778c84c8a1432cfbe0614b6c5a360ca9e02724f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636451/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636451/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17000638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeung, Siu-Wai</creatorcontrib><creatorcontrib>Lee, Thomas Ming-Hung</creatorcontrib><creatorcontrib>Cai, Hong</creatorcontrib><creatorcontrib>Hsing, I. Ming</creatorcontrib><title>DNA biochip for on-the-spot multiplexed pathogen identification</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Miniaturized integrated DNA analysis systems have largely been based on a multi-chamber design with microfluidic control to process the sample sequentially from one module to another. This microchip design in connection with optics involved hinders the deployment of this technology for point-of-care applications. In this work, we demonstrate the implementation of sample preparation, DNA amplification, and electrochemical detection in a single silicon and glass-based microchamber and its application for the multiplexed detection of Escherichia coli and Bacillus subtilis cells. The microdevice has a thin-film heater and temperature sensor patterned on the silicon substrate. An array of indium tin oxide (ITO) electrodes was constructed within the microchamber as the transduction element. Oligonucleotide probes specific to the target amplicons are individually positioned at each ITO surface by electrochemical copolymerization of pyrrole and pyrrole-probe conjugate. These immobilized probes were stable to the thermal cycling process and were highly selective. The DNA-based identification of the two model pathogens involved a number of steps including a thermal lysis step, magnetic particle-based isolation of the target genomes, asymmetric PCR, and electrochemical sequence-specific detection using silver-enhanced gold nanoparticles. The microchamber platform described here offers a cost-effective and sample-to-answer technology for on-site monitoring of multiple pathogens.</description><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - isolation &amp; purification</subject><subject>Bacteria - isolation &amp; purification</subject><subject>DNA, Bacterial - analysis</subject><subject>Electrodes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - isolation &amp; purification</subject><subject>Glass - chemistry</subject><subject>Gold - chemistry</subject><subject>Methods Online</subject><subject>Nanoparticles - chemistry</subject><subject>Oligonucleotide Array Sequence Analysis - instrumentation</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Oligonucleotide Probes</subject><subject>Point-of-Care Systems</subject><subject>Polymerase Chain Reaction</subject><subject>Silicon - chemistry</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1O3DAUBWALUcFAu-EBIOqCRaWUe23HcTYgBJRWQu2iZW05jjNjyMTBTqry9ng0o_KzYeO78Kcr-xxCDhC-IlTspNfhZH7flUC3yAyZoDmvBN0mM2BQ5Ahc7pK9GO8AkGPBd8gulgAgmJyRs8uf51ntvFm4IWt9yHyfjwubx8GP2XLqRjd09p9tskGPCz-3feYa24-udUaPzvcfyYdWd9F-2sx9cvvt6s_F9_zm1_WPi_Ob3HBZjbloTClaqBtaM65rLrhsoClYWUojuZEaOaOmrS0I5LUwhWYCjK4s0JLyFtk-OV3vHaZ6aRuT3hB0p4bgljo8Kq-den3Tu4Wa-78KBRO8WC043iwI_mGycVRLF43tOt1bP0UlZMqSyvchRcpoku9CrEqJAiHBz2_gnZ9Cn-JSNNUgGZM8oS9rZIKPMdj2_98Q1KpmlWpW65oTPnyZxjPd9JrA0Rq02is9Dy6q298UkAHi6ijYEwvRrKk</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Yeung, Siu-Wai</creator><creator>Lee, Thomas Ming-Hung</creator><creator>Cai, Hong</creator><creator>Hsing, I. Ming</creator><general>Oxford Publishing Limited (England)</general><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061001</creationdate><title>DNA biochip for on-the-spot multiplexed pathogen identification</title><author>Yeung, Siu-Wai ; Lee, Thomas Ming-Hung ; Cai, Hong ; Hsing, I. Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-6dc76f0bd2b34ab4648d0d53778c84c8a1432cfbe0614b6c5a360ca9e02724f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - isolation &amp; purification</topic><topic>Bacteria - isolation &amp; purification</topic><topic>DNA, Bacterial - analysis</topic><topic>Electrodes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - isolation &amp; purification</topic><topic>Glass - chemistry</topic><topic>Gold - chemistry</topic><topic>Methods Online</topic><topic>Nanoparticles - chemistry</topic><topic>Oligonucleotide Array Sequence Analysis - instrumentation</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Oligonucleotide Probes</topic><topic>Point-of-Care Systems</topic><topic>Polymerase Chain Reaction</topic><topic>Silicon - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeung, Siu-Wai</creatorcontrib><creatorcontrib>Lee, Thomas Ming-Hung</creatorcontrib><creatorcontrib>Cai, Hong</creatorcontrib><creatorcontrib>Hsing, I. Ming</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeung, Siu-Wai</au><au>Lee, Thomas Ming-Hung</au><au>Cai, Hong</au><au>Hsing, I. Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA biochip for on-the-spot multiplexed pathogen identification</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2006-10-01</date><risdate>2006</risdate><volume>34</volume><issue>18</issue><spage>e118</spage><epage>e118</epage><pages>e118-e118</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Miniaturized integrated DNA analysis systems have largely been based on a multi-chamber design with microfluidic control to process the sample sequentially from one module to another. This microchip design in connection with optics involved hinders the deployment of this technology for point-of-care applications. In this work, we demonstrate the implementation of sample preparation, DNA amplification, and electrochemical detection in a single silicon and glass-based microchamber and its application for the multiplexed detection of Escherichia coli and Bacillus subtilis cells. The microdevice has a thin-film heater and temperature sensor patterned on the silicon substrate. An array of indium tin oxide (ITO) electrodes was constructed within the microchamber as the transduction element. Oligonucleotide probes specific to the target amplicons are individually positioned at each ITO surface by electrochemical copolymerization of pyrrole and pyrrole-probe conjugate. These immobilized probes were stable to the thermal cycling process and were highly selective. The DNA-based identification of the two model pathogens involved a number of steps including a thermal lysis step, magnetic particle-based isolation of the target genomes, asymmetric PCR, and electrochemical sequence-specific detection using silver-enhanced gold nanoparticles. The microchamber platform described here offers a cost-effective and sample-to-answer technology for on-site monitoring of multiple pathogens.</abstract><cop>England</cop><pub>Oxford Publishing Limited (England)</pub><pmid>17000638</pmid><doi>10.1093/nar/gkl702</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2006-10, Vol.34 (18), p.e118-e118
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1636451
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Bacillus subtilis
Bacillus subtilis - genetics
Bacillus subtilis - isolation & purification
Bacteria - isolation & purification
DNA, Bacterial - analysis
Electrodes
Escherichia coli
Escherichia coli - genetics
Escherichia coli - isolation & purification
Glass - chemistry
Gold - chemistry
Methods Online
Nanoparticles - chemistry
Oligonucleotide Array Sequence Analysis - instrumentation
Oligonucleotide Array Sequence Analysis - methods
Oligonucleotide Probes
Point-of-Care Systems
Polymerase Chain Reaction
Silicon - chemistry
title DNA biochip for on-the-spot multiplexed pathogen identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T13%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20biochip%20for%20on-the-spot%20multiplexed%20pathogen%20identification&rft.jtitle=Nucleic%20acids%20research&rft.au=Yeung,%20Siu-Wai&rft.date=2006-10-01&rft.volume=34&rft.issue=18&rft.spage=e118&rft.epage=e118&rft.pages=e118-e118&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkl702&rft_dat=%3Cproquest_pubme%3E19781610%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200683384&rft_id=info:pmid/17000638&rfr_iscdi=true