A Novel Function of 14-3-3 Protein: 14-3-3ζ Is a Heat-Shock–related Molecular Chaperone That Dissolves Thermal-aggregated Proteins

The 14-3-3 proteins are highly conserved molecules that function as intracellular adaptors in a variety of biological processes, such as signal transduction, cell cycle control, and apoptosis. Here, we show that a 14-3-3 protein is a heat-shock protein (Hsp) that protects cells against physiological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell 2006-11, Vol.17 (11), p.4769-4779
Hauptverfasser: Yano, Mihiro, Nakamuta, Shinichi, Wu, Xueji, Okumura, Yuushi, Kido, Hiroshi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 14-3-3 proteins are highly conserved molecules that function as intracellular adaptors in a variety of biological processes, such as signal transduction, cell cycle control, and apoptosis. Here, we show that a 14-3-3 protein is a heat-shock protein (Hsp) that protects cells against physiological stress as its new cellular function. We have observed that, in Drosophila cells, the 14-3-3ζ is up-regulated under heat stress conditions, a process mediated by a heat shock transcription factor. As the biological action linked to heat stress, 14-3-3ζ interacted with apocytochrome c, a mitochondrial precursor protein of cytochrome c, in heat-treated cells, and the suppression of 14-3-3ζ expression by RNA interference resulted in the formation of significant amounts of aggregated apocytochrome c in the cytosol. The aggregated apocytochrome c was converted to a soluble form by the addition of 14-3-3ζ protein and ATP in vitro. 14-3-3ζ also resolubilized heat-aggregated citrate synthase and facilitated its reactivation in cooperation with Hsp70/Hsp40 in vitro. Our observations provide the first direct evidence that a 14-3-3 protein functions as a stress-induced molecular chaperone that dissolves and renaturalizes thermal-aggregated proteins.
ISSN:1059-1524
1939-4586
DOI:10.1091/mbc.e06-03-0229