Multiplexed Genetic Analysis Using an Expanded Genetic Alphabet

All states require some kind of testing for newborns, but the policies are far from standardized. In some states, newborn screening may include genetic tests for a wide range of targets, but the costs and complexities of the newer genetic tests inhibit expansion of newborn screening. We describe the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical chemistry (Baltimore, Md.) Md.), 2004-11, Vol.50 (11), p.2019-2027
Hauptverfasser: Johnson, Scott C, Marshall, David J, Harms, Gerda, Miller, Christie M, Sherrill, Christopher B, Beaty, Edward L, Lederer, Scott A, Roesch, Eric B, Madsen, Gary, Hoffman, Gary L, Laessig, Ronald H, Kopish, Greg J, Baker, Mei Wang, Benner, Steven A, Farrell, Philip M, Prudent, James R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2027
container_issue 11
container_start_page 2019
container_title Clinical chemistry (Baltimore, Md.)
container_volume 50
creator Johnson, Scott C
Marshall, David J
Harms, Gerda
Miller, Christie M
Sherrill, Christopher B
Beaty, Edward L
Lederer, Scott A
Roesch, Eric B
Madsen, Gary
Hoffman, Gary L
Laessig, Ronald H
Kopish, Greg J
Baker, Mei Wang
Benner, Steven A
Farrell, Philip M
Prudent, James R
description All states require some kind of testing for newborns, but the policies are far from standardized. In some states, newborn screening may include genetic tests for a wide range of targets, but the costs and complexities of the newer genetic tests inhibit expansion of newborn screening. We describe the development and technical evaluation of a multiplex platform that may foster increased newborn genetic screening. MultiCode PLx involves three major steps: PCR, target-specific extension, and liquid chip decoding. Each step is performed in the same reaction vessel, and the test is completed in approximately 3 h. For site-specific labeling and room-temperature decoding, we use an additional base pair constructed from isoguanosine and isocytidine. We used the method to test for mutations within the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The developed test was performed manually and by automated liquid handling. Initially, 225 samples with a range of genotypes were tested retrospectively with the method. A prospective study used samples from >400 newborns. In the retrospective study, 99.1% of samples were correctly genotyped with no incorrect calls made. In the perspective study, 95% of the samples were correctly genotyped for all targets, and there were no incorrect calls. The unique genetic multiplexing platform was successfully able to test for 31 targets within the CFTR gene and provides accurate genotype assignments in a clinical setting.
doi_str_mv 10.1373/clinchem.2004.034330
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1592527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>732250401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-f9f17f3370f663c1e055a2054b85877026a02f7f9a07595405995915928ec0e03</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi0EokPhDRCKkAqrDPfG8d-GqqpKQWrFhq4tj8eZuHKcECdM-_Z4NAMtbLqyLB8ff9cfIW8RlkgF_WSDj7Z13bICqJdAa0rhGVkgo1BKxvE5WQCAKhXW4oi8Suk2b2sh-UtylCFUFPmCnF7PYfJDcHduXVy66CZvi7Nown3yqbhJPm4KE4uLu8HE9WMkDK1Zuek1edGYkNybw3pMbr5c_Dj_Wl59v_x2fnZVWo5yKhvVoGgoFdBwTi06YMxUwOqVZFIIqLiBqhGNMiCYYjUwpZhCpirpLDigx-Tz3jvMq86trYvTaIIeRt-Z8V73xut_T6Jv9ab_pXcOVoks-HAQjP3P2aVJdz5ZF4KJrp-T5gIApeRPgpjjKhR1Bt__B97285i_LukKac4vBctQvYfs2Kc0uuZvZAS961H_6VHvetT7HvO1d4_Hfbh0KC4DJwfAJGtCM5pofXrgeIUKYDf2xz3X-k279aPTqTMhZC3q7XbLcgjML2fpb_iNs3Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213995875</pqid></control><display><type>article</type><title>Multiplexed Genetic Analysis Using an Expanded Genetic Alphabet</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><creator>Johnson, Scott C ; Marshall, David J ; Harms, Gerda ; Miller, Christie M ; Sherrill, Christopher B ; Beaty, Edward L ; Lederer, Scott A ; Roesch, Eric B ; Madsen, Gary ; Hoffman, Gary L ; Laessig, Ronald H ; Kopish, Greg J ; Baker, Mei Wang ; Benner, Steven A ; Farrell, Philip M ; Prudent, James R</creator><creatorcontrib>Johnson, Scott C ; Marshall, David J ; Harms, Gerda ; Miller, Christie M ; Sherrill, Christopher B ; Beaty, Edward L ; Lederer, Scott A ; Roesch, Eric B ; Madsen, Gary ; Hoffman, Gary L ; Laessig, Ronald H ; Kopish, Greg J ; Baker, Mei Wang ; Benner, Steven A ; Farrell, Philip M ; Prudent, James R</creatorcontrib><description>All states require some kind of testing for newborns, but the policies are far from standardized. In some states, newborn screening may include genetic tests for a wide range of targets, but the costs and complexities of the newer genetic tests inhibit expansion of newborn screening. We describe the development and technical evaluation of a multiplex platform that may foster increased newborn genetic screening. MultiCode PLx involves three major steps: PCR, target-specific extension, and liquid chip decoding. Each step is performed in the same reaction vessel, and the test is completed in approximately 3 h. For site-specific labeling and room-temperature decoding, we use an additional base pair constructed from isoguanosine and isocytidine. We used the method to test for mutations within the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The developed test was performed manually and by automated liquid handling. Initially, 225 samples with a range of genotypes were tested retrospectively with the method. A prospective study used samples from &gt;400 newborns. In the retrospective study, 99.1% of samples were correctly genotyped with no incorrect calls made. In the perspective study, 95% of the samples were correctly genotyped for all targets, and there were no incorrect calls. The unique genetic multiplexing platform was successfully able to test for 31 targets within the CFTR gene and provides accurate genotype assignments in a clinical setting.</description><identifier>ISSN: 0009-9147</identifier><identifier>EISSN: 1530-8561</identifier><identifier>DOI: 10.1373/clinchem.2004.034330</identifier><identifier>PMID: 15319316</identifier><identifier>CODEN: CLCHAU</identifier><language>eng</language><publisher>Washington, DC: Am Assoc Clin Chem</publisher><subject>Analytical, structural and metabolic biochemistry ; Autoanalysis ; Biological and medical sciences ; Cystic Fibrosis - diagnosis ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; DNA Mutational Analysis - methods ; Fundamental and applied biological sciences. Psychology ; Genetic screening ; Genotype ; Genotypes ; Humans ; Infant, Newborn ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Molecular Diagnostics and Genetics ; Mutation ; Neonatal Screening - methods ; Polymerase Chain Reaction - methods ; Prospective Studies ; Retrospective Studies ; Robotics ; Software</subject><ispartof>Clinical chemistry (Baltimore, Md.), 2004-11, Vol.50 (11), p.2019-2027</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright American Association for Clinical Chemistry Nov 2004</rights><rights>2004 The American Association for Clinical Chemistry 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-f9f17f3370f663c1e055a2054b85877026a02f7f9a07595405995915928ec0e03</citedby><cites>FETCH-LOGICAL-c618t-f9f17f3370f663c1e055a2054b85877026a02f7f9a07595405995915928ec0e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16219007$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15319316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Scott C</creatorcontrib><creatorcontrib>Marshall, David J</creatorcontrib><creatorcontrib>Harms, Gerda</creatorcontrib><creatorcontrib>Miller, Christie M</creatorcontrib><creatorcontrib>Sherrill, Christopher B</creatorcontrib><creatorcontrib>Beaty, Edward L</creatorcontrib><creatorcontrib>Lederer, Scott A</creatorcontrib><creatorcontrib>Roesch, Eric B</creatorcontrib><creatorcontrib>Madsen, Gary</creatorcontrib><creatorcontrib>Hoffman, Gary L</creatorcontrib><creatorcontrib>Laessig, Ronald H</creatorcontrib><creatorcontrib>Kopish, Greg J</creatorcontrib><creatorcontrib>Baker, Mei Wang</creatorcontrib><creatorcontrib>Benner, Steven A</creatorcontrib><creatorcontrib>Farrell, Philip M</creatorcontrib><creatorcontrib>Prudent, James R</creatorcontrib><title>Multiplexed Genetic Analysis Using an Expanded Genetic Alphabet</title><title>Clinical chemistry (Baltimore, Md.)</title><addtitle>Clin Chem</addtitle><description>All states require some kind of testing for newborns, but the policies are far from standardized. In some states, newborn screening may include genetic tests for a wide range of targets, but the costs and complexities of the newer genetic tests inhibit expansion of newborn screening. We describe the development and technical evaluation of a multiplex platform that may foster increased newborn genetic screening. MultiCode PLx involves three major steps: PCR, target-specific extension, and liquid chip decoding. Each step is performed in the same reaction vessel, and the test is completed in approximately 3 h. For site-specific labeling and room-temperature decoding, we use an additional base pair constructed from isoguanosine and isocytidine. We used the method to test for mutations within the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The developed test was performed manually and by automated liquid handling. Initially, 225 samples with a range of genotypes were tested retrospectively with the method. A prospective study used samples from &gt;400 newborns. In the retrospective study, 99.1% of samples were correctly genotyped with no incorrect calls made. In the perspective study, 95% of the samples were correctly genotyped for all targets, and there were no incorrect calls. The unique genetic multiplexing platform was successfully able to test for 31 targets within the CFTR gene and provides accurate genotype assignments in a clinical setting.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Autoanalysis</subject><subject>Biological and medical sciences</subject><subject>Cystic Fibrosis - diagnosis</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>DNA Mutational Analysis - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic screening</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Molecular Diagnostics and Genetics</subject><subject>Mutation</subject><subject>Neonatal Screening - methods</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Prospective Studies</subject><subject>Retrospective Studies</subject><subject>Robotics</subject><subject>Software</subject><issn>0009-9147</issn><issn>1530-8561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkc1u1DAURi0EokPhDRCKkAqrDPfG8d-GqqpKQWrFhq4tj8eZuHKcECdM-_Z4NAMtbLqyLB8ff9cfIW8RlkgF_WSDj7Z13bICqJdAa0rhGVkgo1BKxvE5WQCAKhXW4oi8Suk2b2sh-UtylCFUFPmCnF7PYfJDcHduXVy66CZvi7Nown3yqbhJPm4KE4uLu8HE9WMkDK1Zuek1edGYkNybw3pMbr5c_Dj_Wl59v_x2fnZVWo5yKhvVoGgoFdBwTi06YMxUwOqVZFIIqLiBqhGNMiCYYjUwpZhCpirpLDigx-Tz3jvMq86trYvTaIIeRt-Z8V73xut_T6Jv9ab_pXcOVoks-HAQjP3P2aVJdz5ZF4KJrp-T5gIApeRPgpjjKhR1Bt__B97285i_LukKac4vBctQvYfs2Kc0uuZvZAS961H_6VHvetT7HvO1d4_Hfbh0KC4DJwfAJGtCM5pofXrgeIUKYDf2xz3X-k279aPTqTMhZC3q7XbLcgjML2fpb_iNs3Y</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Johnson, Scott C</creator><creator>Marshall, David J</creator><creator>Harms, Gerda</creator><creator>Miller, Christie M</creator><creator>Sherrill, Christopher B</creator><creator>Beaty, Edward L</creator><creator>Lederer, Scott A</creator><creator>Roesch, Eric B</creator><creator>Madsen, Gary</creator><creator>Hoffman, Gary L</creator><creator>Laessig, Ronald H</creator><creator>Kopish, Greg J</creator><creator>Baker, Mei Wang</creator><creator>Benner, Steven A</creator><creator>Farrell, Philip M</creator><creator>Prudent, James R</creator><general>Am Assoc Clin Chem</general><general>American Association for Clinical Chemistry</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4U-</scope><scope>7QO</scope><scope>7RV</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20041101</creationdate><title>Multiplexed Genetic Analysis Using an Expanded Genetic Alphabet</title><author>Johnson, Scott C ; Marshall, David J ; Harms, Gerda ; Miller, Christie M ; Sherrill, Christopher B ; Beaty, Edward L ; Lederer, Scott A ; Roesch, Eric B ; Madsen, Gary ; Hoffman, Gary L ; Laessig, Ronald H ; Kopish, Greg J ; Baker, Mei Wang ; Benner, Steven A ; Farrell, Philip M ; Prudent, James R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-f9f17f3370f663c1e055a2054b85877026a02f7f9a07595405995915928ec0e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Autoanalysis</topic><topic>Biological and medical sciences</topic><topic>Cystic Fibrosis - diagnosis</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>DNA Mutational Analysis - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic screening</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Molecular Diagnostics and Genetics</topic><topic>Mutation</topic><topic>Neonatal Screening - methods</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Prospective Studies</topic><topic>Retrospective Studies</topic><topic>Robotics</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Scott C</creatorcontrib><creatorcontrib>Marshall, David J</creatorcontrib><creatorcontrib>Harms, Gerda</creatorcontrib><creatorcontrib>Miller, Christie M</creatorcontrib><creatorcontrib>Sherrill, Christopher B</creatorcontrib><creatorcontrib>Beaty, Edward L</creatorcontrib><creatorcontrib>Lederer, Scott A</creatorcontrib><creatorcontrib>Roesch, Eric B</creatorcontrib><creatorcontrib>Madsen, Gary</creatorcontrib><creatorcontrib>Hoffman, Gary L</creatorcontrib><creatorcontrib>Laessig, Ronald H</creatorcontrib><creatorcontrib>Kopish, Greg J</creatorcontrib><creatorcontrib>Baker, Mei Wang</creatorcontrib><creatorcontrib>Benner, Steven A</creatorcontrib><creatorcontrib>Farrell, Philip M</creatorcontrib><creatorcontrib>Prudent, James R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>University Readers</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical chemistry (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Scott C</au><au>Marshall, David J</au><au>Harms, Gerda</au><au>Miller, Christie M</au><au>Sherrill, Christopher B</au><au>Beaty, Edward L</au><au>Lederer, Scott A</au><au>Roesch, Eric B</au><au>Madsen, Gary</au><au>Hoffman, Gary L</au><au>Laessig, Ronald H</au><au>Kopish, Greg J</au><au>Baker, Mei Wang</au><au>Benner, Steven A</au><au>Farrell, Philip M</au><au>Prudent, James R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplexed Genetic Analysis Using an Expanded Genetic Alphabet</atitle><jtitle>Clinical chemistry (Baltimore, Md.)</jtitle><addtitle>Clin Chem</addtitle><date>2004-11-01</date><risdate>2004</risdate><volume>50</volume><issue>11</issue><spage>2019</spage><epage>2027</epage><pages>2019-2027</pages><issn>0009-9147</issn><eissn>1530-8561</eissn><coden>CLCHAU</coden><abstract>All states require some kind of testing for newborns, but the policies are far from standardized. In some states, newborn screening may include genetic tests for a wide range of targets, but the costs and complexities of the newer genetic tests inhibit expansion of newborn screening. We describe the development and technical evaluation of a multiplex platform that may foster increased newborn genetic screening. MultiCode PLx involves three major steps: PCR, target-specific extension, and liquid chip decoding. Each step is performed in the same reaction vessel, and the test is completed in approximately 3 h. For site-specific labeling and room-temperature decoding, we use an additional base pair constructed from isoguanosine and isocytidine. We used the method to test for mutations within the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The developed test was performed manually and by automated liquid handling. Initially, 225 samples with a range of genotypes were tested retrospectively with the method. A prospective study used samples from &gt;400 newborns. In the retrospective study, 99.1% of samples were correctly genotyped with no incorrect calls made. In the perspective study, 95% of the samples were correctly genotyped for all targets, and there were no incorrect calls. The unique genetic multiplexing platform was successfully able to test for 31 targets within the CFTR gene and provides accurate genotype assignments in a clinical setting.</abstract><cop>Washington, DC</cop><pub>Am Assoc Clin Chem</pub><pmid>15319316</pmid><doi>10.1373/clinchem.2004.034330</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-9147
ispartof Clinical chemistry (Baltimore, Md.), 2004-11, Vol.50 (11), p.2019-2027
issn 0009-9147
1530-8561
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1592527
source Oxford University Press Journals All Titles (1996-Current); MEDLINE
subjects Analytical, structural and metabolic biochemistry
Autoanalysis
Biological and medical sciences
Cystic Fibrosis - diagnosis
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
DNA Mutational Analysis - methods
Fundamental and applied biological sciences. Psychology
Genetic screening
Genotype
Genotypes
Humans
Infant, Newborn
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
Molecular Diagnostics and Genetics
Mutation
Neonatal Screening - methods
Polymerase Chain Reaction - methods
Prospective Studies
Retrospective Studies
Robotics
Software
title Multiplexed Genetic Analysis Using an Expanded Genetic Alphabet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplexed%20Genetic%20Analysis%20Using%20an%20Expanded%20Genetic%20Alphabet&rft.jtitle=Clinical%20chemistry%20(Baltimore,%20Md.)&rft.au=Johnson,%20Scott%20C&rft.date=2004-11-01&rft.volume=50&rft.issue=11&rft.spage=2019&rft.epage=2027&rft.pages=2019-2027&rft.issn=0009-9147&rft.eissn=1530-8561&rft.coden=CLCHAU&rft_id=info:doi/10.1373/clinchem.2004.034330&rft_dat=%3Cproquest_pubme%3E732250401%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213995875&rft_id=info:pmid/15319316&rfr_iscdi=true