Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413

The filamentous nitrogen-fixing cyanobacterium Anabdena variabilis ATCC 29413 is capable of heterotrophic growth in complete darkness. After 6 months of continuous dark growth, both the autotrophic and heterotrophic cultures were found to have the same doubling time of 14 h. On a cellular basis, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1993-11, Vol.103 (3), p.971-977
Hauptverfasser: Mannan, R.M, Pakrasi, H.B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 977
container_issue 3
container_start_page 971
container_title Plant physiology (Bethesda)
container_volume 103
creator Mannan, R.M
Pakrasi, H.B
description The filamentous nitrogen-fixing cyanobacterium Anabdena variabilis ATCC 29413 is capable of heterotrophic growth in complete darkness. After 6 months of continuous dark growth, both the autotrophic and heterotrophic cultures were found to have the same doubling time of 14 h. On a cellular basis, the chlorophyll content remained the same and the phycobilin content showed an increase in the dark-grown cultures. Fluorescence emission spectra at 77 K of dark-grown cells indicated that the phycobilisomes are functionally associated with photosystem II (PSII). Moreover, upon transfer to light, the dark-grown cells readily evolved oxygen. Although photosystem I (PSI) and whole chain-mediated electron transfer rates were comparable in both types of cultures, the rate of PSII-mediated electron transfer was found to be 20% higher in dark-grown cells. The PSI to PSII ratio changed from 6:1 in autotrophic cultures to 4:1 in the dark-grown cells. These changes in the rate of PSII electron transfer and in the stoichiometry between the two photosystems under dark, heterotrophic growth conditions were brought about by a preferential increase in the number of PSII units while the number of PSI units remained unchanged. The advantages of using this organism in the selection of PSI-deficient mutants are discussed
doi_str_mv 10.1104/pp.103.3.971
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_159071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4275485</jstor_id><sourcerecordid>4275485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-176c9c12c972ed13b633776d13fd477b27687afea123f8123f9392b41817f2fe3</originalsourceid><addsrcrecordid>eNpVkk2PEyEYx4nRrHX15slowsmTrbx1gMMemrqrTTbx4O6ZMBQ6rDMwArOmX8dPKrW10cvDn_z-zwt5AOA1RguMEfs4jguM6IIuJMdPwAwvKZmTJRNPwQyhqpEQ8jl4kfMDQghTzC7AhUCESEZn4Ncnnb7DzhabYklx7LyBuxR_lg6aGLa--BgyTDZPfYE-QB1qNMnqbA_X0tmDr9hQYHRw7GKJeZ-LHeBmA6fgS_5rc77XQ_XFKUOz1yG22tSufhrgKuhW26Dho05et773Ga7u1mtYZ8T0JXjmdJ_tq9N5Ce5vru_WX-a3Xz9v1qvbuVkSVOaYN0YaTIzkxG4xbRtKOW-qclvGeUt4I7h2VmNCnTgESSVpGRaYO-IsvQRXx7rj1A52a-qsSfdqTH7Qaa-i9up_EnyndvFR4aVEHNf896f8FH9MNhc1-Gxs3-tg66MVb4gQlMlq_HA0mhRzTtade2CkDitV41glVVTJP3Xf_TvX2XzaYeVvj_whl5jOmBFeP8Gy4jdH7HRUepd8VvffJGOcEEF_A0JQsWs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76288349</pqid></control><display><type>article</type><title>Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Mannan, R.M ; Pakrasi, H.B</creator><creatorcontrib>Mannan, R.M ; Pakrasi, H.B</creatorcontrib><description>The filamentous nitrogen-fixing cyanobacterium Anabdena variabilis ATCC 29413 is capable of heterotrophic growth in complete darkness. After 6 months of continuous dark growth, both the autotrophic and heterotrophic cultures were found to have the same doubling time of 14 h. On a cellular basis, the chlorophyll content remained the same and the phycobilin content showed an increase in the dark-grown cultures. Fluorescence emission spectra at 77 K of dark-grown cells indicated that the phycobilisomes are functionally associated with photosystem II (PSII). Moreover, upon transfer to light, the dark-grown cells readily evolved oxygen. Although photosystem I (PSI) and whole chain-mediated electron transfer rates were comparable in both types of cultures, the rate of PSII-mediated electron transfer was found to be 20% higher in dark-grown cells. The PSI to PSII ratio changed from 6:1 in autotrophic cultures to 4:1 in the dark-grown cells. These changes in the rate of PSII electron transfer and in the stoichiometry between the two photosystems under dark, heterotrophic growth conditions were brought about by a preferential increase in the number of PSII units while the number of PSI units remained unchanged. The advantages of using this organism in the selection of PSI-deficient mutants are discussed</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.103.3.971</identifier><identifier>PMID: 8022943</identifier><language>eng</language><publisher>United States: American Society of Plant Physiologists</publisher><subject>ANABAENA ; Anabaena - growth &amp; development ; Anabaena - metabolism ; Anabaena - radiation effects ; Autotrophic processes ; Bioenergetics ; Cell Division ; Cell growth ; CHLOROPHYLLE ; CLOROFILAS ; Cultured cells ; Cyanobacteria ; Darkness ; Diuron - metabolism ; Doubling time ; Electron transfer ; Electron Transport ; FIJACION DEL NITROGENO ; FIXATION DE L'AZOTE ; Fluorescence ; FOTOSINTESIS ; FOTOSISTEMAS ; Kinetics ; Light ; Light-Harvesting Protein Complexes ; Mannans ; Membrane Proteins - biosynthesis ; OBSCURIDAD ; OBSCURITE ; OXIRREDUCION ; OXYDOREDUCTION ; PHOTOSYNTHESE ; Photosynthesis ; Photosynthetic Reaction Center Complex Proteins - biosynthesis ; Photosystem I Protein Complex ; Photosystem II Protein Complex ; PHOTOSYSTEME ; Phycobilisomes ; Pigments ; Temperature ; Thylakoids</subject><ispartof>Plant physiology (Bethesda), 1993-11, Vol.103 (3), p.971-977</ispartof><rights>Copyright 1993 American Society of Plant Physiologists</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-176c9c12c972ed13b633776d13fd477b27687afea123f8123f9392b41817f2fe3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4275485$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4275485$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,804,886,27926,27927,58019,58252</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8022943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mannan, R.M</creatorcontrib><creatorcontrib>Pakrasi, H.B</creatorcontrib><title>Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The filamentous nitrogen-fixing cyanobacterium Anabdena variabilis ATCC 29413 is capable of heterotrophic growth in complete darkness. After 6 months of continuous dark growth, both the autotrophic and heterotrophic cultures were found to have the same doubling time of 14 h. On a cellular basis, the chlorophyll content remained the same and the phycobilin content showed an increase in the dark-grown cultures. Fluorescence emission spectra at 77 K of dark-grown cells indicated that the phycobilisomes are functionally associated with photosystem II (PSII). Moreover, upon transfer to light, the dark-grown cells readily evolved oxygen. Although photosystem I (PSI) and whole chain-mediated electron transfer rates were comparable in both types of cultures, the rate of PSII-mediated electron transfer was found to be 20% higher in dark-grown cells. The PSI to PSII ratio changed from 6:1 in autotrophic cultures to 4:1 in the dark-grown cells. These changes in the rate of PSII electron transfer and in the stoichiometry between the two photosystems under dark, heterotrophic growth conditions were brought about by a preferential increase in the number of PSII units while the number of PSI units remained unchanged. The advantages of using this organism in the selection of PSI-deficient mutants are discussed</description><subject>ANABAENA</subject><subject>Anabaena - growth &amp; development</subject><subject>Anabaena - metabolism</subject><subject>Anabaena - radiation effects</subject><subject>Autotrophic processes</subject><subject>Bioenergetics</subject><subject>Cell Division</subject><subject>Cell growth</subject><subject>CHLOROPHYLLE</subject><subject>CLOROFILAS</subject><subject>Cultured cells</subject><subject>Cyanobacteria</subject><subject>Darkness</subject><subject>Diuron - metabolism</subject><subject>Doubling time</subject><subject>Electron transfer</subject><subject>Electron Transport</subject><subject>FIJACION DEL NITROGENO</subject><subject>FIXATION DE L'AZOTE</subject><subject>Fluorescence</subject><subject>FOTOSINTESIS</subject><subject>FOTOSISTEMAS</subject><subject>Kinetics</subject><subject>Light</subject><subject>Light-Harvesting Protein Complexes</subject><subject>Mannans</subject><subject>Membrane Proteins - biosynthesis</subject><subject>OBSCURIDAD</subject><subject>OBSCURITE</subject><subject>OXIRREDUCION</subject><subject>OXYDOREDUCTION</subject><subject>PHOTOSYNTHESE</subject><subject>Photosynthesis</subject><subject>Photosynthetic Reaction Center Complex Proteins - biosynthesis</subject><subject>Photosystem I Protein Complex</subject><subject>Photosystem II Protein Complex</subject><subject>PHOTOSYSTEME</subject><subject>Phycobilisomes</subject><subject>Pigments</subject><subject>Temperature</subject><subject>Thylakoids</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkk2PEyEYx4nRrHX15slowsmTrbx1gMMemrqrTTbx4O6ZMBQ6rDMwArOmX8dPKrW10cvDn_z-zwt5AOA1RguMEfs4jguM6IIuJMdPwAwvKZmTJRNPwQyhqpEQ8jl4kfMDQghTzC7AhUCESEZn4Ncnnb7DzhabYklx7LyBuxR_lg6aGLa--BgyTDZPfYE-QB1qNMnqbA_X0tmDr9hQYHRw7GKJeZ-LHeBmA6fgS_5rc77XQ_XFKUOz1yG22tSufhrgKuhW26Dho05et773Ga7u1mtYZ8T0JXjmdJ_tq9N5Ce5vru_WX-a3Xz9v1qvbuVkSVOaYN0YaTIzkxG4xbRtKOW-qclvGeUt4I7h2VmNCnTgESSVpGRaYO-IsvQRXx7rj1A52a-qsSfdqTH7Qaa-i9up_EnyndvFR4aVEHNf896f8FH9MNhc1-Gxs3-tg66MVb4gQlMlq_HA0mhRzTtade2CkDitV41glVVTJP3Xf_TvX2XzaYeVvj_whl5jOmBFeP8Gy4jdH7HRUepd8VvffJGOcEEF_A0JQsWs</recordid><startdate>19931101</startdate><enddate>19931101</enddate><creator>Mannan, R.M</creator><creator>Pakrasi, H.B</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19931101</creationdate><title>Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413</title><author>Mannan, R.M ; Pakrasi, H.B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-176c9c12c972ed13b633776d13fd477b27687afea123f8123f9392b41817f2fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>ANABAENA</topic><topic>Anabaena - growth &amp; development</topic><topic>Anabaena - metabolism</topic><topic>Anabaena - radiation effects</topic><topic>Autotrophic processes</topic><topic>Bioenergetics</topic><topic>Cell Division</topic><topic>Cell growth</topic><topic>CHLOROPHYLLE</topic><topic>CLOROFILAS</topic><topic>Cultured cells</topic><topic>Cyanobacteria</topic><topic>Darkness</topic><topic>Diuron - metabolism</topic><topic>Doubling time</topic><topic>Electron transfer</topic><topic>Electron Transport</topic><topic>FIJACION DEL NITROGENO</topic><topic>FIXATION DE L'AZOTE</topic><topic>Fluorescence</topic><topic>FOTOSINTESIS</topic><topic>FOTOSISTEMAS</topic><topic>Kinetics</topic><topic>Light</topic><topic>Light-Harvesting Protein Complexes</topic><topic>Mannans</topic><topic>Membrane Proteins - biosynthesis</topic><topic>OBSCURIDAD</topic><topic>OBSCURITE</topic><topic>OXIRREDUCION</topic><topic>OXYDOREDUCTION</topic><topic>PHOTOSYNTHESE</topic><topic>Photosynthesis</topic><topic>Photosynthetic Reaction Center Complex Proteins - biosynthesis</topic><topic>Photosystem I Protein Complex</topic><topic>Photosystem II Protein Complex</topic><topic>PHOTOSYSTEME</topic><topic>Phycobilisomes</topic><topic>Pigments</topic><topic>Temperature</topic><topic>Thylakoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mannan, R.M</creatorcontrib><creatorcontrib>Pakrasi, H.B</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mannan, R.M</au><au>Pakrasi, H.B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>1993-11-01</date><risdate>1993</risdate><volume>103</volume><issue>3</issue><spage>971</spage><epage>977</epage><pages>971-977</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>The filamentous nitrogen-fixing cyanobacterium Anabdena variabilis ATCC 29413 is capable of heterotrophic growth in complete darkness. After 6 months of continuous dark growth, both the autotrophic and heterotrophic cultures were found to have the same doubling time of 14 h. On a cellular basis, the chlorophyll content remained the same and the phycobilin content showed an increase in the dark-grown cultures. Fluorescence emission spectra at 77 K of dark-grown cells indicated that the phycobilisomes are functionally associated with photosystem II (PSII). Moreover, upon transfer to light, the dark-grown cells readily evolved oxygen. Although photosystem I (PSI) and whole chain-mediated electron transfer rates were comparable in both types of cultures, the rate of PSII-mediated electron transfer was found to be 20% higher in dark-grown cells. The PSI to PSII ratio changed from 6:1 in autotrophic cultures to 4:1 in the dark-grown cells. These changes in the rate of PSII electron transfer and in the stoichiometry between the two photosystems under dark, heterotrophic growth conditions were brought about by a preferential increase in the number of PSII units while the number of PSI units remained unchanged. The advantages of using this organism in the selection of PSI-deficient mutants are discussed</abstract><cop>United States</cop><pub>American Society of Plant Physiologists</pub><pmid>8022943</pmid><doi>10.1104/pp.103.3.971</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 1993-11, Vol.103 (3), p.971-977
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_159071
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; JSTOR
subjects ANABAENA
Anabaena - growth & development
Anabaena - metabolism
Anabaena - radiation effects
Autotrophic processes
Bioenergetics
Cell Division
Cell growth
CHLOROPHYLLE
CLOROFILAS
Cultured cells
Cyanobacteria
Darkness
Diuron - metabolism
Doubling time
Electron transfer
Electron Transport
FIJACION DEL NITROGENO
FIXATION DE L'AZOTE
Fluorescence
FOTOSINTESIS
FOTOSISTEMAS
Kinetics
Light
Light-Harvesting Protein Complexes
Mannans
Membrane Proteins - biosynthesis
OBSCURIDAD
OBSCURITE
OXIRREDUCION
OXYDOREDUCTION
PHOTOSYNTHESE
Photosynthesis
Photosynthetic Reaction Center Complex Proteins - biosynthesis
Photosystem I Protein Complex
Photosystem II Protein Complex
PHOTOSYSTEME
Phycobilisomes
Pigments
Temperature
Thylakoids
title Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dark%20heterotrophic%20growth%20conditions%20result%20in%20an%20increase%20in%20the%20content%20of%20photosystem%20II%20units%20in%20the%20filamentous%20cyanobacterium%20Anabaena%20variabilis%20ATCC%2029413&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Mannan,%20R.M&rft.date=1993-11-01&rft.volume=103&rft.issue=3&rft.spage=971&rft.epage=977&rft.pages=971-977&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.103.3.971&rft_dat=%3Cjstor_pubme%3E4275485%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76288349&rft_id=info:pmid/8022943&rft_jstor_id=4275485&rfr_iscdi=true