Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413
The filamentous nitrogen-fixing cyanobacterium Anabdena variabilis ATCC 29413 is capable of heterotrophic growth in complete darkness. After 6 months of continuous dark growth, both the autotrophic and heterotrophic cultures were found to have the same doubling time of 14 h. On a cellular basis, the...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 1993-11, Vol.103 (3), p.971-977 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 977 |
---|---|
container_issue | 3 |
container_start_page | 971 |
container_title | Plant physiology (Bethesda) |
container_volume | 103 |
creator | Mannan, R.M Pakrasi, H.B |
description | The filamentous nitrogen-fixing cyanobacterium Anabdena variabilis ATCC 29413 is capable of heterotrophic growth in complete darkness. After 6 months of continuous dark growth, both the autotrophic and heterotrophic cultures were found to have the same doubling time of 14 h. On a cellular basis, the chlorophyll content remained the same and the phycobilin content showed an increase in the dark-grown cultures. Fluorescence emission spectra at 77 K of dark-grown cells indicated that the phycobilisomes are functionally associated with photosystem II (PSII). Moreover, upon transfer to light, the dark-grown cells readily evolved oxygen. Although photosystem I (PSI) and whole chain-mediated electron transfer rates were comparable in both types of cultures, the rate of PSII-mediated electron transfer was found to be 20% higher in dark-grown cells. The PSI to PSII ratio changed from 6:1 in autotrophic cultures to 4:1 in the dark-grown cells. These changes in the rate of PSII electron transfer and in the stoichiometry between the two photosystems under dark, heterotrophic growth conditions were brought about by a preferential increase in the number of PSII units while the number of PSI units remained unchanged. The advantages of using this organism in the selection of PSI-deficient mutants are discussed |
doi_str_mv | 10.1104/pp.103.3.971 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_159071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4275485</jstor_id><sourcerecordid>4275485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-176c9c12c972ed13b633776d13fd477b27687afea123f8123f9392b41817f2fe3</originalsourceid><addsrcrecordid>eNpVkk2PEyEYx4nRrHX15slowsmTrbx1gMMemrqrTTbx4O6ZMBQ6rDMwArOmX8dPKrW10cvDn_z-zwt5AOA1RguMEfs4jguM6IIuJMdPwAwvKZmTJRNPwQyhqpEQ8jl4kfMDQghTzC7AhUCESEZn4Ncnnb7DzhabYklx7LyBuxR_lg6aGLa--BgyTDZPfYE-QB1qNMnqbA_X0tmDr9hQYHRw7GKJeZ-LHeBmA6fgS_5rc77XQ_XFKUOz1yG22tSufhrgKuhW26Dho05et773Ga7u1mtYZ8T0JXjmdJ_tq9N5Ce5vru_WX-a3Xz9v1qvbuVkSVOaYN0YaTIzkxG4xbRtKOW-qclvGeUt4I7h2VmNCnTgESSVpGRaYO-IsvQRXx7rj1A52a-qsSfdqTH7Qaa-i9up_EnyndvFR4aVEHNf896f8FH9MNhc1-Gxs3-tg66MVb4gQlMlq_HA0mhRzTtade2CkDitV41glVVTJP3Xf_TvX2XzaYeVvj_whl5jOmBFeP8Gy4jdH7HRUepd8VvffJGOcEEF_A0JQsWs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76288349</pqid></control><display><type>article</type><title>Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Mannan, R.M ; Pakrasi, H.B</creator><creatorcontrib>Mannan, R.M ; Pakrasi, H.B</creatorcontrib><description>The filamentous nitrogen-fixing cyanobacterium Anabdena variabilis ATCC 29413 is capable of heterotrophic growth in complete darkness. After 6 months of continuous dark growth, both the autotrophic and heterotrophic cultures were found to have the same doubling time of 14 h. On a cellular basis, the chlorophyll content remained the same and the phycobilin content showed an increase in the dark-grown cultures. Fluorescence emission spectra at 77 K of dark-grown cells indicated that the phycobilisomes are functionally associated with photosystem II (PSII). Moreover, upon transfer to light, the dark-grown cells readily evolved oxygen. Although photosystem I (PSI) and whole chain-mediated electron transfer rates were comparable in both types of cultures, the rate of PSII-mediated electron transfer was found to be 20% higher in dark-grown cells. The PSI to PSII ratio changed from 6:1 in autotrophic cultures to 4:1 in the dark-grown cells. These changes in the rate of PSII electron transfer and in the stoichiometry between the two photosystems under dark, heterotrophic growth conditions were brought about by a preferential increase in the number of PSII units while the number of PSI units remained unchanged. The advantages of using this organism in the selection of PSI-deficient mutants are discussed</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.103.3.971</identifier><identifier>PMID: 8022943</identifier><language>eng</language><publisher>United States: American Society of Plant Physiologists</publisher><subject>ANABAENA ; Anabaena - growth & development ; Anabaena - metabolism ; Anabaena - radiation effects ; Autotrophic processes ; Bioenergetics ; Cell Division ; Cell growth ; CHLOROPHYLLE ; CLOROFILAS ; Cultured cells ; Cyanobacteria ; Darkness ; Diuron - metabolism ; Doubling time ; Electron transfer ; Electron Transport ; FIJACION DEL NITROGENO ; FIXATION DE L'AZOTE ; Fluorescence ; FOTOSINTESIS ; FOTOSISTEMAS ; Kinetics ; Light ; Light-Harvesting Protein Complexes ; Mannans ; Membrane Proteins - biosynthesis ; OBSCURIDAD ; OBSCURITE ; OXIRREDUCION ; OXYDOREDUCTION ; PHOTOSYNTHESE ; Photosynthesis ; Photosynthetic Reaction Center Complex Proteins - biosynthesis ; Photosystem I Protein Complex ; Photosystem II Protein Complex ; PHOTOSYSTEME ; Phycobilisomes ; Pigments ; Temperature ; Thylakoids</subject><ispartof>Plant physiology (Bethesda), 1993-11, Vol.103 (3), p.971-977</ispartof><rights>Copyright 1993 American Society of Plant Physiologists</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-176c9c12c972ed13b633776d13fd477b27687afea123f8123f9392b41817f2fe3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4275485$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4275485$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,804,886,27926,27927,58019,58252</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8022943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mannan, R.M</creatorcontrib><creatorcontrib>Pakrasi, H.B</creatorcontrib><title>Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The filamentous nitrogen-fixing cyanobacterium Anabdena variabilis ATCC 29413 is capable of heterotrophic growth in complete darkness. After 6 months of continuous dark growth, both the autotrophic and heterotrophic cultures were found to have the same doubling time of 14 h. On a cellular basis, the chlorophyll content remained the same and the phycobilin content showed an increase in the dark-grown cultures. Fluorescence emission spectra at 77 K of dark-grown cells indicated that the phycobilisomes are functionally associated with photosystem II (PSII). Moreover, upon transfer to light, the dark-grown cells readily evolved oxygen. Although photosystem I (PSI) and whole chain-mediated electron transfer rates were comparable in both types of cultures, the rate of PSII-mediated electron transfer was found to be 20% higher in dark-grown cells. The PSI to PSII ratio changed from 6:1 in autotrophic cultures to 4:1 in the dark-grown cells. These changes in the rate of PSII electron transfer and in the stoichiometry between the two photosystems under dark, heterotrophic growth conditions were brought about by a preferential increase in the number of PSII units while the number of PSI units remained unchanged. The advantages of using this organism in the selection of PSI-deficient mutants are discussed</description><subject>ANABAENA</subject><subject>Anabaena - growth & development</subject><subject>Anabaena - metabolism</subject><subject>Anabaena - radiation effects</subject><subject>Autotrophic processes</subject><subject>Bioenergetics</subject><subject>Cell Division</subject><subject>Cell growth</subject><subject>CHLOROPHYLLE</subject><subject>CLOROFILAS</subject><subject>Cultured cells</subject><subject>Cyanobacteria</subject><subject>Darkness</subject><subject>Diuron - metabolism</subject><subject>Doubling time</subject><subject>Electron transfer</subject><subject>Electron Transport</subject><subject>FIJACION DEL NITROGENO</subject><subject>FIXATION DE L'AZOTE</subject><subject>Fluorescence</subject><subject>FOTOSINTESIS</subject><subject>FOTOSISTEMAS</subject><subject>Kinetics</subject><subject>Light</subject><subject>Light-Harvesting Protein Complexes</subject><subject>Mannans</subject><subject>Membrane Proteins - biosynthesis</subject><subject>OBSCURIDAD</subject><subject>OBSCURITE</subject><subject>OXIRREDUCION</subject><subject>OXYDOREDUCTION</subject><subject>PHOTOSYNTHESE</subject><subject>Photosynthesis</subject><subject>Photosynthetic Reaction Center Complex Proteins - biosynthesis</subject><subject>Photosystem I Protein Complex</subject><subject>Photosystem II Protein Complex</subject><subject>PHOTOSYSTEME</subject><subject>Phycobilisomes</subject><subject>Pigments</subject><subject>Temperature</subject><subject>Thylakoids</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkk2PEyEYx4nRrHX15slowsmTrbx1gMMemrqrTTbx4O6ZMBQ6rDMwArOmX8dPKrW10cvDn_z-zwt5AOA1RguMEfs4jguM6IIuJMdPwAwvKZmTJRNPwQyhqpEQ8jl4kfMDQghTzC7AhUCESEZn4Ncnnb7DzhabYklx7LyBuxR_lg6aGLa--BgyTDZPfYE-QB1qNMnqbA_X0tmDr9hQYHRw7GKJeZ-LHeBmA6fgS_5rc77XQ_XFKUOz1yG22tSufhrgKuhW26Dho05et773Ga7u1mtYZ8T0JXjmdJ_tq9N5Ce5vru_WX-a3Xz9v1qvbuVkSVOaYN0YaTIzkxG4xbRtKOW-qclvGeUt4I7h2VmNCnTgESSVpGRaYO-IsvQRXx7rj1A52a-qsSfdqTH7Qaa-i9up_EnyndvFR4aVEHNf896f8FH9MNhc1-Gxs3-tg66MVb4gQlMlq_HA0mhRzTtade2CkDitV41glVVTJP3Xf_TvX2XzaYeVvj_whl5jOmBFeP8Gy4jdH7HRUepd8VvffJGOcEEF_A0JQsWs</recordid><startdate>19931101</startdate><enddate>19931101</enddate><creator>Mannan, R.M</creator><creator>Pakrasi, H.B</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19931101</creationdate><title>Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413</title><author>Mannan, R.M ; Pakrasi, H.B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-176c9c12c972ed13b633776d13fd477b27687afea123f8123f9392b41817f2fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>ANABAENA</topic><topic>Anabaena - growth & development</topic><topic>Anabaena - metabolism</topic><topic>Anabaena - radiation effects</topic><topic>Autotrophic processes</topic><topic>Bioenergetics</topic><topic>Cell Division</topic><topic>Cell growth</topic><topic>CHLOROPHYLLE</topic><topic>CLOROFILAS</topic><topic>Cultured cells</topic><topic>Cyanobacteria</topic><topic>Darkness</topic><topic>Diuron - metabolism</topic><topic>Doubling time</topic><topic>Electron transfer</topic><topic>Electron Transport</topic><topic>FIJACION DEL NITROGENO</topic><topic>FIXATION DE L'AZOTE</topic><topic>Fluorescence</topic><topic>FOTOSINTESIS</topic><topic>FOTOSISTEMAS</topic><topic>Kinetics</topic><topic>Light</topic><topic>Light-Harvesting Protein Complexes</topic><topic>Mannans</topic><topic>Membrane Proteins - biosynthesis</topic><topic>OBSCURIDAD</topic><topic>OBSCURITE</topic><topic>OXIRREDUCION</topic><topic>OXYDOREDUCTION</topic><topic>PHOTOSYNTHESE</topic><topic>Photosynthesis</topic><topic>Photosynthetic Reaction Center Complex Proteins - biosynthesis</topic><topic>Photosystem I Protein Complex</topic><topic>Photosystem II Protein Complex</topic><topic>PHOTOSYSTEME</topic><topic>Phycobilisomes</topic><topic>Pigments</topic><topic>Temperature</topic><topic>Thylakoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mannan, R.M</creatorcontrib><creatorcontrib>Pakrasi, H.B</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mannan, R.M</au><au>Pakrasi, H.B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>1993-11-01</date><risdate>1993</risdate><volume>103</volume><issue>3</issue><spage>971</spage><epage>977</epage><pages>971-977</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>The filamentous nitrogen-fixing cyanobacterium Anabdena variabilis ATCC 29413 is capable of heterotrophic growth in complete darkness. After 6 months of continuous dark growth, both the autotrophic and heterotrophic cultures were found to have the same doubling time of 14 h. On a cellular basis, the chlorophyll content remained the same and the phycobilin content showed an increase in the dark-grown cultures. Fluorescence emission spectra at 77 K of dark-grown cells indicated that the phycobilisomes are functionally associated with photosystem II (PSII). Moreover, upon transfer to light, the dark-grown cells readily evolved oxygen. Although photosystem I (PSI) and whole chain-mediated electron transfer rates were comparable in both types of cultures, the rate of PSII-mediated electron transfer was found to be 20% higher in dark-grown cells. The PSI to PSII ratio changed from 6:1 in autotrophic cultures to 4:1 in the dark-grown cells. These changes in the rate of PSII electron transfer and in the stoichiometry between the two photosystems under dark, heterotrophic growth conditions were brought about by a preferential increase in the number of PSII units while the number of PSI units remained unchanged. The advantages of using this organism in the selection of PSI-deficient mutants are discussed</abstract><cop>United States</cop><pub>American Society of Plant Physiologists</pub><pmid>8022943</pmid><doi>10.1104/pp.103.3.971</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 1993-11, Vol.103 (3), p.971-977 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_159071 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; JSTOR |
subjects | ANABAENA Anabaena - growth & development Anabaena - metabolism Anabaena - radiation effects Autotrophic processes Bioenergetics Cell Division Cell growth CHLOROPHYLLE CLOROFILAS Cultured cells Cyanobacteria Darkness Diuron - metabolism Doubling time Electron transfer Electron Transport FIJACION DEL NITROGENO FIXATION DE L'AZOTE Fluorescence FOTOSINTESIS FOTOSISTEMAS Kinetics Light Light-Harvesting Protein Complexes Mannans Membrane Proteins - biosynthesis OBSCURIDAD OBSCURITE OXIRREDUCION OXYDOREDUCTION PHOTOSYNTHESE Photosynthesis Photosynthetic Reaction Center Complex Proteins - biosynthesis Photosystem I Protein Complex Photosystem II Protein Complex PHOTOSYSTEME Phycobilisomes Pigments Temperature Thylakoids |
title | Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dark%20heterotrophic%20growth%20conditions%20result%20in%20an%20increase%20in%20the%20content%20of%20photosystem%20II%20units%20in%20the%20filamentous%20cyanobacterium%20Anabaena%20variabilis%20ATCC%2029413&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Mannan,%20R.M&rft.date=1993-11-01&rft.volume=103&rft.issue=3&rft.spage=971&rft.epage=977&rft.pages=971-977&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.103.3.971&rft_dat=%3Cjstor_pubme%3E4275485%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76288349&rft_id=info:pmid/8022943&rft_jstor_id=4275485&rfr_iscdi=true |