A CapG gain-of-function mutant reveals critical structural and functional determinants for actin filament severing
CapG is the only member of the gelsolin family unable to sever actin filaments. Changing amino acids 84–91 (severing domain) and 124–137 (WH2‐containing segment) simultaneously to the sequences of gelsolin results in a mutant, CapG‐sev, capable of severing actin filaments. The gain of severing funct...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2006-10, Vol.25 (19), p.4458-4467 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4467 |
---|---|
container_issue | 19 |
container_start_page | 4458 |
container_title | The EMBO journal |
container_volume | 25 |
creator | Zhang, Y Vorobiev, Sergey M Gibson, Bruce G Hao, Binghua Sidhu, Gurjit S Mishra, Vishnu S Yarmola, Elena G Bubb, Michael R Almo, Steven C Southwick, Frederick S |
description | CapG is the only member of the gelsolin family unable to sever actin filaments. Changing amino acids 84–91 (severing domain) and 124–137 (WH2‐containing segment) simultaneously to the sequences of gelsolin results in a mutant, CapG‐sev, capable of severing actin filaments. The gain of severing function does not alter actin filament capping, but is accompanied by a higher affinity for monomeric actin, and the capacity to bind and sequester two actin monomers. Analysis of CapG‐sev crystal structure suggests a more loosely folded inactive conformation than gelsolin, with a shorter S1–S2 latch. Calcium binding to S1 opens this latch and S1 becomes separated from a closely interfaced S2–S3 complex by an extended arm consisting of amino acids 118–137. Modeling with F‐actin predicts that the length of this WH2‐containing arm is critical for severing function, and the addition of a single amino acid (alanine or histidine) eliminates CapG‐sev severing activity, confirming this prediction. We conclude that efficient severing utilizes two actin monomer‐binding sites, and that the length of the WH2‐containing segment is a critical functional determinant for severing. |
doi_str_mv | 10.1038/sj.emboj.7601323 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1589989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1139400961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6043-59a4b64abead719c388537875924fe5fd8788391ea2a03b35fba2d9b94c5a5553</originalsourceid><addsrcrecordid>eNqFkkFv0zAAhS0EYt3gzgVkceCWYsd2bF-QRjUKaIzLAImL5ThOcUnsYicb-_e4pLQDCe2URO97Ly9-AeAJRnOMiHiZ1nPb12E95xXCpCT3wAzTChUl4uw-mKGywgXFQh6B45TWCCEmOH4IjnAlOSeYz0A8hQu9WcKVdr4IbdGO3gwueNiPg_YDjPbK6i5BE93gjO5gGuJohjHmW-0b-IfPj40dbOydz7YE2xChzoqHret0b3NUylHR-dUj8KDNkfbx7noCPr05u1y8Lc4_Lt8tTs8LUyFKCiY1rSuqa6sbjqUhQjDCBWeypK1lbSO4EERiq0uNSE1YW-uykbWkhmnGGDkBr6bczVj3tjG5Q26tNtH1Ot6ooJ36W_Hum1qFK4WZkFLIHPBiFxDDj9GmQfUuGdt12tswJlUJiTnLx34XiCWVlOIt-PwfcB3GmA9vy7CyooRVGUITZGJIKdp2XxkjtZ1dpbX6PbvazZ4tz25_6sGw2zkDcgKuXWdv7gxUZx9evz-E48mbNtv5bLxV-v-Fnk4er_O_YvcvPOjFpLs02J97WcfvquKEM_XlYqkuL5ZfcYk_K0Z-AXei6A4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195264356</pqid></control><display><type>article</type><title>A CapG gain-of-function mutant reveals critical structural and functional determinants for actin filament severing</title><source>Springer Nature OA Free Journals</source><creator>Zhang, Y ; Vorobiev, Sergey M ; Gibson, Bruce G ; Hao, Binghua ; Sidhu, Gurjit S ; Mishra, Vishnu S ; Yarmola, Elena G ; Bubb, Michael R ; Almo, Steven C ; Southwick, Frederick S</creator><creatorcontrib>Zhang, Y ; Vorobiev, Sergey M ; Gibson, Bruce G ; Hao, Binghua ; Sidhu, Gurjit S ; Mishra, Vishnu S ; Yarmola, Elena G ; Bubb, Michael R ; Almo, Steven C ; Southwick, Frederick S</creatorcontrib><description>CapG is the only member of the gelsolin family unable to sever actin filaments. Changing amino acids 84–91 (severing domain) and 124–137 (WH2‐containing segment) simultaneously to the sequences of gelsolin results in a mutant, CapG‐sev, capable of severing actin filaments. The gain of severing function does not alter actin filament capping, but is accompanied by a higher affinity for monomeric actin, and the capacity to bind and sequester two actin monomers. Analysis of CapG‐sev crystal structure suggests a more loosely folded inactive conformation than gelsolin, with a shorter S1–S2 latch. Calcium binding to S1 opens this latch and S1 becomes separated from a closely interfaced S2–S3 complex by an extended arm consisting of amino acids 118–137. Modeling with F‐actin predicts that the length of this WH2‐containing arm is critical for severing function, and the addition of a single amino acid (alanine or histidine) eliminates CapG‐sev severing activity, confirming this prediction. We conclude that efficient severing utilizes two actin monomer‐binding sites, and that the length of the WH2‐containing segment is a critical functional determinant for severing.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/sj.emboj.7601323</identifier><identifier>PMID: 16977317</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Actin Cytoskeleton - chemistry ; Actin Cytoskeleton - metabolism ; actin-regulatory proteins ; Actins - metabolism ; Amino Acid Sequence ; Amino Acid Substitution ; Amino acids ; Animals ; Binding sites ; Calcium ; CapG ; Crystallography, X-Ray ; EMBO05 ; EMBO40 ; gelsolin ; Gelsolin - chemistry ; Gelsolin - genetics ; Gelsolin - metabolism ; Models, Biological ; Models, Molecular ; Molecular biology ; Molecular Sequence Data ; Mutant Proteins - chemistry ; Mutant Proteins - metabolism ; Mutation ; Protein Binding ; Protein Structure, Secondary ; Proteins ; Rabbits ; severing ; Structure-Activity Relationship ; WH2</subject><ispartof>The EMBO journal, 2006-10, Vol.25 (19), p.4458-4467</ispartof><rights>European Molecular Biology Organization 2006</rights><rights>Copyright © 2006 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Oct 4, 2006</rights><rights>Copyright © 2006, European Molecular Biology Organization 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6043-59a4b64abead719c388537875924fe5fd8788391ea2a03b35fba2d9b94c5a5553</citedby><cites>FETCH-LOGICAL-c6043-59a4b64abead719c388537875924fe5fd8788391ea2a03b35fba2d9b94c5a5553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1589989/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1589989/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/sj.emboj.7601323$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16977317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Y</creatorcontrib><creatorcontrib>Vorobiev, Sergey M</creatorcontrib><creatorcontrib>Gibson, Bruce G</creatorcontrib><creatorcontrib>Hao, Binghua</creatorcontrib><creatorcontrib>Sidhu, Gurjit S</creatorcontrib><creatorcontrib>Mishra, Vishnu S</creatorcontrib><creatorcontrib>Yarmola, Elena G</creatorcontrib><creatorcontrib>Bubb, Michael R</creatorcontrib><creatorcontrib>Almo, Steven C</creatorcontrib><creatorcontrib>Southwick, Frederick S</creatorcontrib><title>A CapG gain-of-function mutant reveals critical structural and functional determinants for actin filament severing</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>CapG is the only member of the gelsolin family unable to sever actin filaments. Changing amino acids 84–91 (severing domain) and 124–137 (WH2‐containing segment) simultaneously to the sequences of gelsolin results in a mutant, CapG‐sev, capable of severing actin filaments. The gain of severing function does not alter actin filament capping, but is accompanied by a higher affinity for monomeric actin, and the capacity to bind and sequester two actin monomers. Analysis of CapG‐sev crystal structure suggests a more loosely folded inactive conformation than gelsolin, with a shorter S1–S2 latch. Calcium binding to S1 opens this latch and S1 becomes separated from a closely interfaced S2–S3 complex by an extended arm consisting of amino acids 118–137. Modeling with F‐actin predicts that the length of this WH2‐containing arm is critical for severing function, and the addition of a single amino acid (alanine or histidine) eliminates CapG‐sev severing activity, confirming this prediction. We conclude that efficient severing utilizes two actin monomer‐binding sites, and that the length of the WH2‐containing segment is a critical functional determinant for severing.</description><subject>Actin Cytoskeleton - chemistry</subject><subject>Actin Cytoskeleton - metabolism</subject><subject>actin-regulatory proteins</subject><subject>Actins - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Calcium</subject><subject>CapG</subject><subject>Crystallography, X-Ray</subject><subject>EMBO05</subject><subject>EMBO40</subject><subject>gelsolin</subject><subject>Gelsolin - chemistry</subject><subject>Gelsolin - genetics</subject><subject>Gelsolin - metabolism</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Rabbits</subject><subject>severing</subject><subject>Structure-Activity Relationship</subject><subject>WH2</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkkFv0zAAhS0EYt3gzgVkceCWYsd2bF-QRjUKaIzLAImL5ThOcUnsYicb-_e4pLQDCe2URO97Ly9-AeAJRnOMiHiZ1nPb12E95xXCpCT3wAzTChUl4uw-mKGywgXFQh6B45TWCCEmOH4IjnAlOSeYz0A8hQu9WcKVdr4IbdGO3gwueNiPg_YDjPbK6i5BE93gjO5gGuJohjHmW-0b-IfPj40dbOydz7YE2xChzoqHret0b3NUylHR-dUj8KDNkfbx7noCPr05u1y8Lc4_Lt8tTs8LUyFKCiY1rSuqa6sbjqUhQjDCBWeypK1lbSO4EERiq0uNSE1YW-uykbWkhmnGGDkBr6bczVj3tjG5Q26tNtH1Ot6ooJ36W_Hum1qFK4WZkFLIHPBiFxDDj9GmQfUuGdt12tswJlUJiTnLx34XiCWVlOIt-PwfcB3GmA9vy7CyooRVGUITZGJIKdp2XxkjtZ1dpbX6PbvazZ4tz25_6sGw2zkDcgKuXWdv7gxUZx9evz-E48mbNtv5bLxV-v-Fnk4er_O_YvcvPOjFpLs02J97WcfvquKEM_XlYqkuL5ZfcYk_K0Z-AXei6A4</recordid><startdate>20061004</startdate><enddate>20061004</enddate><creator>Zhang, Y</creator><creator>Vorobiev, Sergey M</creator><creator>Gibson, Bruce G</creator><creator>Hao, Binghua</creator><creator>Sidhu, Gurjit S</creator><creator>Mishra, Vishnu S</creator><creator>Yarmola, Elena G</creator><creator>Bubb, Michael R</creator><creator>Almo, Steven C</creator><creator>Southwick, Frederick S</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061004</creationdate><title>A CapG gain-of-function mutant reveals critical structural and functional determinants for actin filament severing</title><author>Zhang, Y ; Vorobiev, Sergey M ; Gibson, Bruce G ; Hao, Binghua ; Sidhu, Gurjit S ; Mishra, Vishnu S ; Yarmola, Elena G ; Bubb, Michael R ; Almo, Steven C ; Southwick, Frederick S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6043-59a4b64abead719c388537875924fe5fd8788391ea2a03b35fba2d9b94c5a5553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Actin Cytoskeleton - chemistry</topic><topic>Actin Cytoskeleton - metabolism</topic><topic>actin-regulatory proteins</topic><topic>Actins - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Calcium</topic><topic>CapG</topic><topic>Crystallography, X-Ray</topic><topic>EMBO05</topic><topic>EMBO40</topic><topic>gelsolin</topic><topic>Gelsolin - chemistry</topic><topic>Gelsolin - genetics</topic><topic>Gelsolin - metabolism</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Rabbits</topic><topic>severing</topic><topic>Structure-Activity Relationship</topic><topic>WH2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Y</creatorcontrib><creatorcontrib>Vorobiev, Sergey M</creatorcontrib><creatorcontrib>Gibson, Bruce G</creatorcontrib><creatorcontrib>Hao, Binghua</creatorcontrib><creatorcontrib>Sidhu, Gurjit S</creatorcontrib><creatorcontrib>Mishra, Vishnu S</creatorcontrib><creatorcontrib>Yarmola, Elena G</creatorcontrib><creatorcontrib>Bubb, Michael R</creatorcontrib><creatorcontrib>Almo, Steven C</creatorcontrib><creatorcontrib>Southwick, Frederick S</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest_Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Y</au><au>Vorobiev, Sergey M</au><au>Gibson, Bruce G</au><au>Hao, Binghua</au><au>Sidhu, Gurjit S</au><au>Mishra, Vishnu S</au><au>Yarmola, Elena G</au><au>Bubb, Michael R</au><au>Almo, Steven C</au><au>Southwick, Frederick S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A CapG gain-of-function mutant reveals critical structural and functional determinants for actin filament severing</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2006-10-04</date><risdate>2006</risdate><volume>25</volume><issue>19</issue><spage>4458</spage><epage>4467</epage><pages>4458-4467</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>CapG is the only member of the gelsolin family unable to sever actin filaments. Changing amino acids 84–91 (severing domain) and 124–137 (WH2‐containing segment) simultaneously to the sequences of gelsolin results in a mutant, CapG‐sev, capable of severing actin filaments. The gain of severing function does not alter actin filament capping, but is accompanied by a higher affinity for monomeric actin, and the capacity to bind and sequester two actin monomers. Analysis of CapG‐sev crystal structure suggests a more loosely folded inactive conformation than gelsolin, with a shorter S1–S2 latch. Calcium binding to S1 opens this latch and S1 becomes separated from a closely interfaced S2–S3 complex by an extended arm consisting of amino acids 118–137. Modeling with F‐actin predicts that the length of this WH2‐containing arm is critical for severing function, and the addition of a single amino acid (alanine or histidine) eliminates CapG‐sev severing activity, confirming this prediction. We conclude that efficient severing utilizes two actin monomer‐binding sites, and that the length of the WH2‐containing segment is a critical functional determinant for severing.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>16977317</pmid><doi>10.1038/sj.emboj.7601323</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2006-10, Vol.25 (19), p.4458-4467 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1589989 |
source | Springer Nature OA Free Journals |
subjects | Actin Cytoskeleton - chemistry Actin Cytoskeleton - metabolism actin-regulatory proteins Actins - metabolism Amino Acid Sequence Amino Acid Substitution Amino acids Animals Binding sites Calcium CapG Crystallography, X-Ray EMBO05 EMBO40 gelsolin Gelsolin - chemistry Gelsolin - genetics Gelsolin - metabolism Models, Biological Models, Molecular Molecular biology Molecular Sequence Data Mutant Proteins - chemistry Mutant Proteins - metabolism Mutation Protein Binding Protein Structure, Secondary Proteins Rabbits severing Structure-Activity Relationship WH2 |
title | A CapG gain-of-function mutant reveals critical structural and functional determinants for actin filament severing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20CapG%20gain-of-function%20mutant%20reveals%20critical%20structural%20and%20functional%20determinants%20for%20actin%20filament%20severing&rft.jtitle=The%20EMBO%20journal&rft.au=Zhang,%20Y&rft.date=2006-10-04&rft.volume=25&rft.issue=19&rft.spage=4458&rft.epage=4467&rft.pages=4458-4467&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/sj.emboj.7601323&rft_dat=%3Cproquest_C6C%3E1139400961%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195264356&rft_id=info:pmid/16977317&rfr_iscdi=true |