Differential effect of purified spruce chitinases and beta-1,3-glucanases on the activity of elicitors from ectomycorrhizal fungi

Two chitinases (EC 3.2.1.14) and two beta-1,3-glucanases (EC 3.2.1.39) were purified from the culture medium of spruce (Picea abies [L.] Karst.) cells to study their role in modifying elicitors, cell walls, growth, and hyphal morphology of ectomycorrhizal fungi. The 36-kD class I chitinase (isoelect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1997-07, Vol.114 (3), p.957-968
Hauptverfasser: Salzer, P, Hubner, B, Sirrenberg, A, Hager, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 968
container_issue 3
container_start_page 957
container_title Plant physiology (Bethesda)
container_volume 114
creator Salzer, P
Hubner, B
Sirrenberg, A
Hager, A
description Two chitinases (EC 3.2.1.14) and two beta-1,3-glucanases (EC 3.2.1.39) were purified from the culture medium of spruce (Picea abies [L.] Karst.) cells to study their role in modifying elicitors, cell walls, growth, and hyphal morphology of ectomycorrhizal fungi. The 36-kD class I chitinase (isoelectric point [pI] 8.0) and the 28-kD chitinase (pI 8.7) decreased the activity of elicitor preparations from Hebeloma crustuliniforme (Bull. ex Fries.) Quell, Amanita muscaria (L.) Pers., and Suillus variegatus (Sw.: Fr.) O.K., as demonstrated by using the elicitor-induced extracellular alkalinization in spruce cells as a test system. In addition, chitinases released monomeric products from the walls of these ectomycorrhizal fungi. The beta-1,3-glucanases (35 kD, pI 3.7 and 3.9), in contrast, had little influence on the activity of the fungal elicitors and released only from walls of A. muscaria some polymeric products. Furthermore, chitinases alone and in combination with beta-1,3-glucanases had no effect on the growth and morphology of the hyphae. Thus, it is suggested that apoplastic chitinases in the root cortex destroy elicitors from the ectomycorrhizal fungi without damaging the fungus. By this mechanism the host plant could attenuate the elicitor signal and adjust its own defense reactions to a level allowing symbiotic interaction
doi_str_mv 10.1104/pp.114.3.957
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_158384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4277789</jstor_id><sourcerecordid>4277789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-7f35bbafae8d139f5e6fe14a6d5fe510348fe5f04f3e4091e446f9941ffdf0753</originalsourceid><addsrcrecordid>eNqFUj1vFDEQXSFQuAQ6SpBcoFTZw17ba7tIgcKnFIkCUls-78ydo731Yu9GOjr-OT7d6YAq1Rv5vXkz45mqesXokjEq3o1jQbHkSyPVk2rBJG_qRgr9tFpQWmKqtXlened8TyllnImz6sw0vNFKLarfHwIiJBim4HoCJfYTiUjGOQUM0JE8ptkD8ZswhcFlyMQNHVnB5Gp2xet1P3t3eI8DmTZAnJ_CQ5h2exfogw9TTJlgiltSvON252NKm_CrlMN5WIcX1TN0fYaXR7yo7j59_HHzpb799vnrzfvb2kvWTLVCLlcrhw50x7hBCS0CE67tJIJklAtdEKlADoIaBkK0aIxgiB1SJflFdX3wHefVFjpfRk6ut2MKW5d2Nrpg_2eGsLHr-GCZ1FyLkn95zE_x5wx5stuQPfS9GyDO2SrDZFs-9VGh0EK1QrNHhazlZb-iKcKrg9CnmHMCPHXNqN3fgB3HgsJyW26gyN_8O-lJfFx64d8eeZe96zG5wYd8kjVKGKX27b0-yO5zWeGJFo1SSpu_VdBF69apONx9Z8Yo2pYja_kfwYjPTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16310442</pqid></control><display><type>article</type><title>Differential effect of purified spruce chitinases and beta-1,3-glucanases on the activity of elicitors from ectomycorrhizal fungi</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Salzer, P ; Hubner, B ; Sirrenberg, A ; Hager, A</creator><creatorcontrib>Salzer, P ; Hubner, B ; Sirrenberg, A ; Hager, A</creatorcontrib><description>Two chitinases (EC 3.2.1.14) and two beta-1,3-glucanases (EC 3.2.1.39) were purified from the culture medium of spruce (Picea abies [L.] Karst.) cells to study their role in modifying elicitors, cell walls, growth, and hyphal morphology of ectomycorrhizal fungi. The 36-kD class I chitinase (isoelectric point [pI] 8.0) and the 28-kD chitinase (pI 8.7) decreased the activity of elicitor preparations from Hebeloma crustuliniforme (Bull. ex Fries.) Quell, Amanita muscaria (L.) Pers., and Suillus variegatus (Sw.: Fr.) O.K., as demonstrated by using the elicitor-induced extracellular alkalinization in spruce cells as a test system. In addition, chitinases released monomeric products from the walls of these ectomycorrhizal fungi. The beta-1,3-glucanases (35 kD, pI 3.7 and 3.9), in contrast, had little influence on the activity of the fungal elicitors and released only from walls of A. muscaria some polymeric products. Furthermore, chitinases alone and in combination with beta-1,3-glucanases had no effect on the growth and morphology of the hyphae. Thus, it is suggested that apoplastic chitinases in the root cortex destroy elicitors from the ectomycorrhizal fungi without damaging the fungus. By this mechanism the host plant could attenuate the elicitor signal and adjust its own defense reactions to a level allowing symbiotic interaction</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.114.3.957</identifier><identifier>PMID: 9232877</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; Agronomy. Soil science and plant productions ; AMANITA ; Amanita - physiology ; AMANITA MUSCARIA ; Amino Acid Sequence ; Basidiomycota ; Basidiomycota - physiology ; BETA GLUCANASA ; BETA GLUCANASE ; beta-Glucosidase ; beta-Glucosidase - isolation &amp; purification ; beta-Glucosidase - metabolism ; Biological and medical sciences ; biosynthesis ; CELL CULTURE ; cell growth ; cell wall components ; CELL WALLS ; CELLS ; Cells, Cultured ; CELLULE ; CELULAS ; chemistry ; Chitin ; Chitin - isolation &amp; purification ; Chitin - metabolism ; CHITINASE ; Chitinases ; Chitinases - chemistry ; Chitinases - isolation &amp; purification ; Chitinases - metabolism ; Chromatography ; Chromatography, Affinity ; Chromatography, Ion Exchange ; CRECIMIENTO ; CROISSANCE ; CULTIVO DE CELULAS ; CULTURE DE CELLULE ; Cultured cells ; DEFENCE MECHANISMS ; defense mechanisms ; Economic plant physiology ; ectomycorrhizae ; enzyme activity ; Enzymes ; ENZYMIC ACTIVITY ; enzymology ; Fundamental and applied biological sciences. Psychology ; FUNGAL MORPHOLOGY ; Fungal Proteins ; Fungal Proteins - metabolism ; Fungi ; Glucan 1,3-beta-Glucosidase ; GROWTH ; HEBELOMA ; HEBELOMA CRUSTULINIFORME ; HYPHAE ; INFECTIVITY ; INHIBICION ; INHIBITION ; Isoenzymes ; Isoenzymes - biosynthesis ; Isoenzymes - chemistry ; Isoenzymes - metabolism ; isolation &amp; purification ; MECANISME DE DEFENSE ; MECANISMOS DE DEFENSA ; metabolism ; MICELIO ; microbiology ; Molecular Sequence Data ; Molecular Weight ; MORFOLOGIA FUNGICA ; MORPHOLOGIE DE CHAMPIGNON ; MYCELIUM ; MYCORHIZE ; MYCORRHIZAE ; Parasitism and symbiosis ; PARED CELULAR ; PAROI CELLULAIRE ; PATHOGENICITY ; PATOGENICIDAD ; physiology ; PICEA ABIES ; Plant physiology and development ; Plant roots ; Plant-Microbe and Plant-Insect Interactions ; Plants ; POUVOIR PATHOGENE ; Protein isoforms ; Proteins ; PURIFICACION ; PURIFICATION ; QUITINASA ; Sequence Alignment ; Sequence Homology, Amino Acid ; SIMBIOSIS ; SUILLUS ; SYMBIOSE ; SYMBIOSIS ; Symbiosis (nodules, symbiotic nitrogen fixation, mycorrhiza...) ; Trees ; Trees - enzymology ; Trees - microbiology</subject><ispartof>Plant physiology (Bethesda), 1997-07, Vol.114 (3), p.957-968</ispartof><rights>Copyright 1997 American Society of Plant Physiologists</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-7f35bbafae8d139f5e6fe14a6d5fe510348fe5f04f3e4091e446f9941ffdf0753</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4277789$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4277789$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2749771$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9232877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salzer, P</creatorcontrib><creatorcontrib>Hubner, B</creatorcontrib><creatorcontrib>Sirrenberg, A</creatorcontrib><creatorcontrib>Hager, A</creatorcontrib><title>Differential effect of purified spruce chitinases and beta-1,3-glucanases on the activity of elicitors from ectomycorrhizal fungi</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Two chitinases (EC 3.2.1.14) and two beta-1,3-glucanases (EC 3.2.1.39) were purified from the culture medium of spruce (Picea abies [L.] Karst.) cells to study their role in modifying elicitors, cell walls, growth, and hyphal morphology of ectomycorrhizal fungi. The 36-kD class I chitinase (isoelectric point [pI] 8.0) and the 28-kD chitinase (pI 8.7) decreased the activity of elicitor preparations from Hebeloma crustuliniforme (Bull. ex Fries.) Quell, Amanita muscaria (L.) Pers., and Suillus variegatus (Sw.: Fr.) O.K., as demonstrated by using the elicitor-induced extracellular alkalinization in spruce cells as a test system. In addition, chitinases released monomeric products from the walls of these ectomycorrhizal fungi. The beta-1,3-glucanases (35 kD, pI 3.7 and 3.9), in contrast, had little influence on the activity of the fungal elicitors and released only from walls of A. muscaria some polymeric products. Furthermore, chitinases alone and in combination with beta-1,3-glucanases had no effect on the growth and morphology of the hyphae. Thus, it is suggested that apoplastic chitinases in the root cortex destroy elicitors from the ectomycorrhizal fungi without damaging the fungus. By this mechanism the host plant could attenuate the elicitor signal and adjust its own defense reactions to a level allowing symbiotic interaction</description><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>Agronomy. Soil science and plant productions</subject><subject>AMANITA</subject><subject>Amanita - physiology</subject><subject>AMANITA MUSCARIA</subject><subject>Amino Acid Sequence</subject><subject>Basidiomycota</subject><subject>Basidiomycota - physiology</subject><subject>BETA GLUCANASA</subject><subject>BETA GLUCANASE</subject><subject>beta-Glucosidase</subject><subject>beta-Glucosidase - isolation &amp; purification</subject><subject>beta-Glucosidase - metabolism</subject><subject>Biological and medical sciences</subject><subject>biosynthesis</subject><subject>CELL CULTURE</subject><subject>cell growth</subject><subject>cell wall components</subject><subject>CELL WALLS</subject><subject>CELLS</subject><subject>Cells, Cultured</subject><subject>CELLULE</subject><subject>CELULAS</subject><subject>chemistry</subject><subject>Chitin</subject><subject>Chitin - isolation &amp; purification</subject><subject>Chitin - metabolism</subject><subject>CHITINASE</subject><subject>Chitinases</subject><subject>Chitinases - chemistry</subject><subject>Chitinases - isolation &amp; purification</subject><subject>Chitinases - metabolism</subject><subject>Chromatography</subject><subject>Chromatography, Affinity</subject><subject>Chromatography, Ion Exchange</subject><subject>CRECIMIENTO</subject><subject>CROISSANCE</subject><subject>CULTIVO DE CELULAS</subject><subject>CULTURE DE CELLULE</subject><subject>Cultured cells</subject><subject>DEFENCE MECHANISMS</subject><subject>defense mechanisms</subject><subject>Economic plant physiology</subject><subject>ectomycorrhizae</subject><subject>enzyme activity</subject><subject>Enzymes</subject><subject>ENZYMIC ACTIVITY</subject><subject>enzymology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>FUNGAL MORPHOLOGY</subject><subject>Fungal Proteins</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungi</subject><subject>Glucan 1,3-beta-Glucosidase</subject><subject>GROWTH</subject><subject>HEBELOMA</subject><subject>HEBELOMA CRUSTULINIFORME</subject><subject>HYPHAE</subject><subject>INFECTIVITY</subject><subject>INHIBICION</subject><subject>INHIBITION</subject><subject>Isoenzymes</subject><subject>Isoenzymes - biosynthesis</subject><subject>Isoenzymes - chemistry</subject><subject>Isoenzymes - metabolism</subject><subject>isolation &amp; purification</subject><subject>MECANISME DE DEFENSE</subject><subject>MECANISMOS DE DEFENSA</subject><subject>metabolism</subject><subject>MICELIO</subject><subject>microbiology</subject><subject>Molecular Sequence Data</subject><subject>Molecular Weight</subject><subject>MORFOLOGIA FUNGICA</subject><subject>MORPHOLOGIE DE CHAMPIGNON</subject><subject>MYCELIUM</subject><subject>MYCORHIZE</subject><subject>MYCORRHIZAE</subject><subject>Parasitism and symbiosis</subject><subject>PARED CELULAR</subject><subject>PAROI CELLULAIRE</subject><subject>PATHOGENICITY</subject><subject>PATOGENICIDAD</subject><subject>physiology</subject><subject>PICEA ABIES</subject><subject>Plant physiology and development</subject><subject>Plant roots</subject><subject>Plant-Microbe and Plant-Insect Interactions</subject><subject>Plants</subject><subject>POUVOIR PATHOGENE</subject><subject>Protein isoforms</subject><subject>Proteins</subject><subject>PURIFICACION</subject><subject>PURIFICATION</subject><subject>QUITINASA</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>SIMBIOSIS</subject><subject>SUILLUS</subject><subject>SYMBIOSE</subject><subject>SYMBIOSIS</subject><subject>Symbiosis (nodules, symbiotic nitrogen fixation, mycorrhiza...)</subject><subject>Trees</subject><subject>Trees - enzymology</subject><subject>Trees - microbiology</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUj1vFDEQXSFQuAQ6SpBcoFTZw17ba7tIgcKnFIkCUls-78ydo731Yu9GOjr-OT7d6YAq1Rv5vXkz45mqesXokjEq3o1jQbHkSyPVk2rBJG_qRgr9tFpQWmKqtXlened8TyllnImz6sw0vNFKLarfHwIiJBim4HoCJfYTiUjGOQUM0JE8ptkD8ZswhcFlyMQNHVnB5Gp2xet1P3t3eI8DmTZAnJ_CQ5h2exfogw9TTJlgiltSvON252NKm_CrlMN5WIcX1TN0fYaXR7yo7j59_HHzpb799vnrzfvb2kvWTLVCLlcrhw50x7hBCS0CE67tJIJklAtdEKlADoIaBkK0aIxgiB1SJflFdX3wHefVFjpfRk6ut2MKW5d2Nrpg_2eGsLHr-GCZ1FyLkn95zE_x5wx5stuQPfS9GyDO2SrDZFs-9VGh0EK1QrNHhazlZb-iKcKrg9CnmHMCPHXNqN3fgB3HgsJyW26gyN_8O-lJfFx64d8eeZe96zG5wYd8kjVKGKX27b0-yO5zWeGJFo1SSpu_VdBF69apONx9Z8Yo2pYja_kfwYjPTQ</recordid><startdate>19970701</startdate><enddate>19970701</enddate><creator>Salzer, P</creator><creator>Hubner, B</creator><creator>Sirrenberg, A</creator><creator>Hager, A</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19970701</creationdate><title>Differential effect of purified spruce chitinases and beta-1,3-glucanases on the activity of elicitors from ectomycorrhizal fungi</title><author>Salzer, P ; Hubner, B ; Sirrenberg, A ; Hager, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-7f35bbafae8d139f5e6fe14a6d5fe510348fe5f04f3e4091e446f9941ffdf0753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>Agronomy. Soil science and plant productions</topic><topic>AMANITA</topic><topic>Amanita - physiology</topic><topic>AMANITA MUSCARIA</topic><topic>Amino Acid Sequence</topic><topic>Basidiomycota</topic><topic>Basidiomycota - physiology</topic><topic>BETA GLUCANASA</topic><topic>BETA GLUCANASE</topic><topic>beta-Glucosidase</topic><topic>beta-Glucosidase - isolation &amp; purification</topic><topic>beta-Glucosidase - metabolism</topic><topic>Biological and medical sciences</topic><topic>biosynthesis</topic><topic>CELL CULTURE</topic><topic>cell growth</topic><topic>cell wall components</topic><topic>CELL WALLS</topic><topic>CELLS</topic><topic>Cells, Cultured</topic><topic>CELLULE</topic><topic>CELULAS</topic><topic>chemistry</topic><topic>Chitin</topic><topic>Chitin - isolation &amp; purification</topic><topic>Chitin - metabolism</topic><topic>CHITINASE</topic><topic>Chitinases</topic><topic>Chitinases - chemistry</topic><topic>Chitinases - isolation &amp; purification</topic><topic>Chitinases - metabolism</topic><topic>Chromatography</topic><topic>Chromatography, Affinity</topic><topic>Chromatography, Ion Exchange</topic><topic>CRECIMIENTO</topic><topic>CROISSANCE</topic><topic>CULTIVO DE CELULAS</topic><topic>CULTURE DE CELLULE</topic><topic>Cultured cells</topic><topic>DEFENCE MECHANISMS</topic><topic>defense mechanisms</topic><topic>Economic plant physiology</topic><topic>ectomycorrhizae</topic><topic>enzyme activity</topic><topic>Enzymes</topic><topic>ENZYMIC ACTIVITY</topic><topic>enzymology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>FUNGAL MORPHOLOGY</topic><topic>Fungal Proteins</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungi</topic><topic>Glucan 1,3-beta-Glucosidase</topic><topic>GROWTH</topic><topic>HEBELOMA</topic><topic>HEBELOMA CRUSTULINIFORME</topic><topic>HYPHAE</topic><topic>INFECTIVITY</topic><topic>INHIBICION</topic><topic>INHIBITION</topic><topic>Isoenzymes</topic><topic>Isoenzymes - biosynthesis</topic><topic>Isoenzymes - chemistry</topic><topic>Isoenzymes - metabolism</topic><topic>isolation &amp; purification</topic><topic>MECANISME DE DEFENSE</topic><topic>MECANISMOS DE DEFENSA</topic><topic>metabolism</topic><topic>MICELIO</topic><topic>microbiology</topic><topic>Molecular Sequence Data</topic><topic>Molecular Weight</topic><topic>MORFOLOGIA FUNGICA</topic><topic>MORPHOLOGIE DE CHAMPIGNON</topic><topic>MYCELIUM</topic><topic>MYCORHIZE</topic><topic>MYCORRHIZAE</topic><topic>Parasitism and symbiosis</topic><topic>PARED CELULAR</topic><topic>PAROI CELLULAIRE</topic><topic>PATHOGENICITY</topic><topic>PATOGENICIDAD</topic><topic>physiology</topic><topic>PICEA ABIES</topic><topic>Plant physiology and development</topic><topic>Plant roots</topic><topic>Plant-Microbe and Plant-Insect Interactions</topic><topic>Plants</topic><topic>POUVOIR PATHOGENE</topic><topic>Protein isoforms</topic><topic>Proteins</topic><topic>PURIFICACION</topic><topic>PURIFICATION</topic><topic>QUITINASA</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>SIMBIOSIS</topic><topic>SUILLUS</topic><topic>SYMBIOSE</topic><topic>SYMBIOSIS</topic><topic>Symbiosis (nodules, symbiotic nitrogen fixation, mycorrhiza...)</topic><topic>Trees</topic><topic>Trees - enzymology</topic><topic>Trees - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salzer, P</creatorcontrib><creatorcontrib>Hubner, B</creatorcontrib><creatorcontrib>Sirrenberg, A</creatorcontrib><creatorcontrib>Hager, A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salzer, P</au><au>Hubner, B</au><au>Sirrenberg, A</au><au>Hager, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential effect of purified spruce chitinases and beta-1,3-glucanases on the activity of elicitors from ectomycorrhizal fungi</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>1997-07-01</date><risdate>1997</risdate><volume>114</volume><issue>3</issue><spage>957</spage><epage>968</epage><pages>957-968</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Two chitinases (EC 3.2.1.14) and two beta-1,3-glucanases (EC 3.2.1.39) were purified from the culture medium of spruce (Picea abies [L.] Karst.) cells to study their role in modifying elicitors, cell walls, growth, and hyphal morphology of ectomycorrhizal fungi. The 36-kD class I chitinase (isoelectric point [pI] 8.0) and the 28-kD chitinase (pI 8.7) decreased the activity of elicitor preparations from Hebeloma crustuliniforme (Bull. ex Fries.) Quell, Amanita muscaria (L.) Pers., and Suillus variegatus (Sw.: Fr.) O.K., as demonstrated by using the elicitor-induced extracellular alkalinization in spruce cells as a test system. In addition, chitinases released monomeric products from the walls of these ectomycorrhizal fungi. The beta-1,3-glucanases (35 kD, pI 3.7 and 3.9), in contrast, had little influence on the activity of the fungal elicitors and released only from walls of A. muscaria some polymeric products. Furthermore, chitinases alone and in combination with beta-1,3-glucanases had no effect on the growth and morphology of the hyphae. Thus, it is suggested that apoplastic chitinases in the root cortex destroy elicitors from the ectomycorrhizal fungi without damaging the fungus. By this mechanism the host plant could attenuate the elicitor signal and adjust its own defense reactions to a level allowing symbiotic interaction</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>9232877</pmid><doi>10.1104/pp.114.3.957</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 1997-07, Vol.114 (3), p.957-968
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_158384
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects ACTIVIDAD ENZIMATICA
ACTIVITE ENZYMATIQUE
Agronomy. Soil science and plant productions
AMANITA
Amanita - physiology
AMANITA MUSCARIA
Amino Acid Sequence
Basidiomycota
Basidiomycota - physiology
BETA GLUCANASA
BETA GLUCANASE
beta-Glucosidase
beta-Glucosidase - isolation & purification
beta-Glucosidase - metabolism
Biological and medical sciences
biosynthesis
CELL CULTURE
cell growth
cell wall components
CELL WALLS
CELLS
Cells, Cultured
CELLULE
CELULAS
chemistry
Chitin
Chitin - isolation & purification
Chitin - metabolism
CHITINASE
Chitinases
Chitinases - chemistry
Chitinases - isolation & purification
Chitinases - metabolism
Chromatography
Chromatography, Affinity
Chromatography, Ion Exchange
CRECIMIENTO
CROISSANCE
CULTIVO DE CELULAS
CULTURE DE CELLULE
Cultured cells
DEFENCE MECHANISMS
defense mechanisms
Economic plant physiology
ectomycorrhizae
enzyme activity
Enzymes
ENZYMIC ACTIVITY
enzymology
Fundamental and applied biological sciences. Psychology
FUNGAL MORPHOLOGY
Fungal Proteins
Fungal Proteins - metabolism
Fungi
Glucan 1,3-beta-Glucosidase
GROWTH
HEBELOMA
HEBELOMA CRUSTULINIFORME
HYPHAE
INFECTIVITY
INHIBICION
INHIBITION
Isoenzymes
Isoenzymes - biosynthesis
Isoenzymes - chemistry
Isoenzymes - metabolism
isolation & purification
MECANISME DE DEFENSE
MECANISMOS DE DEFENSA
metabolism
MICELIO
microbiology
Molecular Sequence Data
Molecular Weight
MORFOLOGIA FUNGICA
MORPHOLOGIE DE CHAMPIGNON
MYCELIUM
MYCORHIZE
MYCORRHIZAE
Parasitism and symbiosis
PARED CELULAR
PAROI CELLULAIRE
PATHOGENICITY
PATOGENICIDAD
physiology
PICEA ABIES
Plant physiology and development
Plant roots
Plant-Microbe and Plant-Insect Interactions
Plants
POUVOIR PATHOGENE
Protein isoforms
Proteins
PURIFICACION
PURIFICATION
QUITINASA
Sequence Alignment
Sequence Homology, Amino Acid
SIMBIOSIS
SUILLUS
SYMBIOSE
SYMBIOSIS
Symbiosis (nodules, symbiotic nitrogen fixation, mycorrhiza...)
Trees
Trees - enzymology
Trees - microbiology
title Differential effect of purified spruce chitinases and beta-1,3-glucanases on the activity of elicitors from ectomycorrhizal fungi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20effect%20of%20purified%20spruce%20chitinases%20and%20beta-1,3-glucanases%20on%20the%20activity%20of%20elicitors%20from%20ectomycorrhizal%20fungi&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Salzer,%20P&rft.date=1997-07-01&rft.volume=114&rft.issue=3&rft.spage=957&rft.epage=968&rft.pages=957-968&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.114.3.957&rft_dat=%3Cjstor_pubme%3E4277789%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16310442&rft_id=info:pmid/9232877&rft_jstor_id=4277789&rfr_iscdi=true