Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts
To investigate the potential role of a polyol, mannitol, in oxidative stress protection, a bacterial mannitol-1-phosphate dehydrogenase gene was targeted to chloroplasts by the addition of an amino-terminal transit peptide. Transgenic tobacco (Nicotiana tabacum) lines accumulate mannitol at concentr...
Gespeichert in:
Veröffentlicht in: | Plant Physiology (Bethesda) 1997-04, Vol.113 (4), p.1177-1183 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1183 |
---|---|
container_issue | 4 |
container_start_page | 1177 |
container_title | Plant Physiology (Bethesda) |
container_volume | 113 |
creator | Shen, B. (The University of Arizona, Tucson, AZ.) Jensen, R.G Bohnert, H.J |
description | To investigate the potential role of a polyol, mannitol, in oxidative stress protection, a bacterial mannitol-1-phosphate dehydrogenase gene was targeted to chloroplasts by the addition of an amino-terminal transit peptide. Transgenic tobacco (Nicotiana tabacum) lines accumulate mannitol at concentrations ranging from 2.5 to 7 micromoles/g fresh weight. Line BS1-31 accumulated approximately 100 mM mannitol in chloroplasts and was identical to the wild type in phenotype and photosynthetic performance. The presence of mannitol in chloroplasts resulted in an increased resistance to methyl viologen (MV)-induced oxidative stress, documented by the increased retention of chlorophyll in transgenic leaf tissue following MV treatment. In the presence of MV, isolated mesophyll cells of BS1-31 exhibited higher CO2 fixation than the wild type. When the hydroxyl radical probe dimethyl sulfoxide was introduced into cells, the initial formation rate of methane sulfinic acid was significantly lower in cells containing mannitol in the chloroplast compartment than in wild-type cells, indicating an increased hydroxyl radical-scavenging capacity in BS1-31 tobacco. We suggest that the chloroplast location of mannitol can supplement endogenous radical-scavenging mechanisms and reduce oxidative damage of cells by hydroxyl radicals |
doi_str_mv | 10.1104/pp.113.4.1177 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_158240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4277639</jstor_id><sourcerecordid>4277639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c613t-a104217bd2bcf3bbd3a66fb5222da84f52b8525e1df4fa1e2d12ac5a6d9d1b2a3</originalsourceid><addsrcrecordid>eNpVkcuLFDEQxhtR1nH16E0hgnibNZVHPw57kMXHwoIH3XOoTqdnsvQkbSqzOP-9aWYY9ZIKfL_6qpKvql4DvwLg6uM8lyqvVDmb5km1Ai3FWmjVPq1WnJc7b9vuefWC6IFzDhLURXXRAYimEatqvg02OSQ3sOTIU8ZgHcuRxd9-wOwfHaNcFGI-sJww0MYFb9k8YcjE-gPLmDYu-7BhOwzB5zix3kc6hLxdDBcvu51iiqWFMr2sno04kXt1qpfV_ZfPP2--re--f729-XS3tjXIvMbyNAFNP4jejrLvB4l1PfZaCDFgq0Yt-lYL7WAY1YjgxAACrcZ66AboBcrL6vroO-_7nRusC2X7yczJ7zAdTERv_leC35pNfDSgW6F46X937I-UvSHrs7NbG0NwNhsNbS2bwnw4zUjx195RNjtP1k3lb1zck4FaSODNYrY-gjZFouTG8x7AzZKimedSpVFmSbHwb_9d_kyfYiv6-5OOZHEaSy7W0xkTddtqrQv25og9UI7pLKviUcvu75QRo8FNKg73P6DrGq46BUr-AXMju78</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16231070</pqid></control><display><type>article</type><title>Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shen, B. (The University of Arizona, Tucson, AZ.) ; Jensen, R.G ; Bohnert, H.J</creator><creatorcontrib>Shen, B. (The University of Arizona, Tucson, AZ.) ; Jensen, R.G ; Bohnert, H.J</creatorcontrib><description>To investigate the potential role of a polyol, mannitol, in oxidative stress protection, a bacterial mannitol-1-phosphate dehydrogenase gene was targeted to chloroplasts by the addition of an amino-terminal transit peptide. Transgenic tobacco (Nicotiana tabacum) lines accumulate mannitol at concentrations ranging from 2.5 to 7 micromoles/g fresh weight. Line BS1-31 accumulated approximately 100 mM mannitol in chloroplasts and was identical to the wild type in phenotype and photosynthetic performance. The presence of mannitol in chloroplasts resulted in an increased resistance to methyl viologen (MV)-induced oxidative stress, documented by the increased retention of chlorophyll in transgenic leaf tissue following MV treatment. In the presence of MV, isolated mesophyll cells of BS1-31 exhibited higher CO2 fixation than the wild type. When the hydroxyl radical probe dimethyl sulfoxide was introduced into cells, the initial formation rate of methane sulfinic acid was significantly lower in cells containing mannitol in the chloroplast compartment than in wild-type cells, indicating an increased hydroxyl radical-scavenging capacity in BS1-31 tobacco. We suggest that the chloroplast location of mannitol can supplement endogenous radical-scavenging mechanisms and reduce oxidative damage of cells by hydroxyl radicals</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.113.4.1177</identifier><identifier>PMID: 9112772</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; ANALISIS CUANTITATIVO ; ANALYSE QUANTITATIVE ; BACTERIA ; BIOLOGICAL ADAPTATION ; Biological and medical sciences ; BIOLOGICAL PATHWAYS ; BIOLOGY AND MEDICINE, BASIC STUDIES ; BIOSINTESIS ; BIOSYNTHESE ; BIOSYNTHESIS ; Carbon Dioxide - metabolism ; CHEMICAL COMPOSITION ; CHLOROPHYLLE ; CHLOROPHYLLS ; CHLOROPLASTE ; CHLOROPLASTS ; Chloroplasts - metabolism ; CLOROFILAS ; CLOROPLASTO ; COMPOSICION QUIMICA ; COMPOSITION CHIMIQUE ; ECOLOGICAL CONCENTRATION ; Enzymes ; ENZYMIC ACTIVITY ; Escherichia coli - genetics ; EXPRESION GENICA ; EXPRESSION DES GENES ; FEUILLE ; FOTOSINTESIS ; Fundamental and applied biological sciences. Psychology ; GENE ; GENE EXPRESSION ; GENE TRANSFER ; GENES ; Genes, Bacterial ; GENETIC REGULATION ; GENETICA ; GENETICS ; GENETIQUE ; GENOTIPOS ; GENOTYPE ; GENOTYPES ; HOJAS ; HYDROXYL RADICALS ; Kinetics ; LEAVES ; MANITOL ; MANNITOL ; Mannitol - metabolism ; MANNITOL-1-PHOSPHATE DEHYDROGENASE ; Mesophyll cells ; Metabolism ; Metabolism. Physicochemical requirements ; METHYL VIOLOGEN ; NET ASSIMILATION RATE ; NICOTIANA ; Nicotiana - physiology ; NICOTIANA TABACUM ; Oxidative Stress ; OXIDOREDUCTASES ; OXIDORREDUCTASAS ; OXIGENO ; OXYDOREDUCTASE ; OXYGEN ; OXYGENE ; PHOTOSYNTHESE ; PHOTOSYNTHESIS ; Plant cells ; Plant Leaves ; Plant physiology and development ; PLANTAS TRANSGENICAS ; PLANTE TRANSGENIQUE ; Plants ; Plants, Genetically Modified - physiology ; Plants, Toxic ; QUANTITATIVE ANALYSIS ; REACTIVE OXYGEN SPECIES ; Recombinant Proteins - biosynthesis ; STRESS RESPONSE ; Sugar Alcohol Dehydrogenases - biosynthesis ; Sugar Alcohol Dehydrogenases - genetics ; Superoxides ; TRANSFERENCIA DE GENES ; TRANSFERT DE GENE ; TRANSGENIC PLANTS ; Whole Plant, Environmental, and Stress Physiology ; WILD RELATIVES</subject><ispartof>Plant Physiology (Bethesda), 1997-04, Vol.113 (4), p.1177-1183</ispartof><rights>Copyright 1997 American Society of Plant Physiologists</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c613t-a104217bd2bcf3bbd3a66fb5222da84f52b8525e1df4fa1e2d12ac5a6d9d1b2a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4277639$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4277639$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2688555$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9112772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/518637$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, B. (The University of Arizona, Tucson, AZ.)</creatorcontrib><creatorcontrib>Jensen, R.G</creatorcontrib><creatorcontrib>Bohnert, H.J</creatorcontrib><title>Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts</title><title>Plant Physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>To investigate the potential role of a polyol, mannitol, in oxidative stress protection, a bacterial mannitol-1-phosphate dehydrogenase gene was targeted to chloroplasts by the addition of an amino-terminal transit peptide. Transgenic tobacco (Nicotiana tabacum) lines accumulate mannitol at concentrations ranging from 2.5 to 7 micromoles/g fresh weight. Line BS1-31 accumulated approximately 100 mM mannitol in chloroplasts and was identical to the wild type in phenotype and photosynthetic performance. The presence of mannitol in chloroplasts resulted in an increased resistance to methyl viologen (MV)-induced oxidative stress, documented by the increased retention of chlorophyll in transgenic leaf tissue following MV treatment. In the presence of MV, isolated mesophyll cells of BS1-31 exhibited higher CO2 fixation than the wild type. When the hydroxyl radical probe dimethyl sulfoxide was introduced into cells, the initial formation rate of methane sulfinic acid was significantly lower in cells containing mannitol in the chloroplast compartment than in wild-type cells, indicating an increased hydroxyl radical-scavenging capacity in BS1-31 tobacco. We suggest that the chloroplast location of mannitol can supplement endogenous radical-scavenging mechanisms and reduce oxidative damage of cells by hydroxyl radicals</description><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>ANALISIS CUANTITATIVO</subject><subject>ANALYSE QUANTITATIVE</subject><subject>BACTERIA</subject><subject>BIOLOGICAL ADAPTATION</subject><subject>Biological and medical sciences</subject><subject>BIOLOGICAL PATHWAYS</subject><subject>BIOLOGY AND MEDICINE, BASIC STUDIES</subject><subject>BIOSINTESIS</subject><subject>BIOSYNTHESE</subject><subject>BIOSYNTHESIS</subject><subject>Carbon Dioxide - metabolism</subject><subject>CHEMICAL COMPOSITION</subject><subject>CHLOROPHYLLE</subject><subject>CHLOROPHYLLS</subject><subject>CHLOROPLASTE</subject><subject>CHLOROPLASTS</subject><subject>Chloroplasts - metabolism</subject><subject>CLOROFILAS</subject><subject>CLOROPLASTO</subject><subject>COMPOSICION QUIMICA</subject><subject>COMPOSITION CHIMIQUE</subject><subject>ECOLOGICAL CONCENTRATION</subject><subject>Enzymes</subject><subject>ENZYMIC ACTIVITY</subject><subject>Escherichia coli - genetics</subject><subject>EXPRESION GENICA</subject><subject>EXPRESSION DES GENES</subject><subject>FEUILLE</subject><subject>FOTOSINTESIS</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GENE</subject><subject>GENE EXPRESSION</subject><subject>GENE TRANSFER</subject><subject>GENES</subject><subject>Genes, Bacterial</subject><subject>GENETIC REGULATION</subject><subject>GENETICA</subject><subject>GENETICS</subject><subject>GENETIQUE</subject><subject>GENOTIPOS</subject><subject>GENOTYPE</subject><subject>GENOTYPES</subject><subject>HOJAS</subject><subject>HYDROXYL RADICALS</subject><subject>Kinetics</subject><subject>LEAVES</subject><subject>MANITOL</subject><subject>MANNITOL</subject><subject>Mannitol - metabolism</subject><subject>MANNITOL-1-PHOSPHATE DEHYDROGENASE</subject><subject>Mesophyll cells</subject><subject>Metabolism</subject><subject>Metabolism. Physicochemical requirements</subject><subject>METHYL VIOLOGEN</subject><subject>NET ASSIMILATION RATE</subject><subject>NICOTIANA</subject><subject>Nicotiana - physiology</subject><subject>NICOTIANA TABACUM</subject><subject>Oxidative Stress</subject><subject>OXIDOREDUCTASES</subject><subject>OXIDORREDUCTASAS</subject><subject>OXIGENO</subject><subject>OXYDOREDUCTASE</subject><subject>OXYGEN</subject><subject>OXYGENE</subject><subject>PHOTOSYNTHESE</subject><subject>PHOTOSYNTHESIS</subject><subject>Plant cells</subject><subject>Plant Leaves</subject><subject>Plant physiology and development</subject><subject>PLANTAS TRANSGENICAS</subject><subject>PLANTE TRANSGENIQUE</subject><subject>Plants</subject><subject>Plants, Genetically Modified - physiology</subject><subject>Plants, Toxic</subject><subject>QUANTITATIVE ANALYSIS</subject><subject>REACTIVE OXYGEN SPECIES</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>STRESS RESPONSE</subject><subject>Sugar Alcohol Dehydrogenases - biosynthesis</subject><subject>Sugar Alcohol Dehydrogenases - genetics</subject><subject>Superoxides</subject><subject>TRANSFERENCIA DE GENES</subject><subject>TRANSFERT DE GENE</subject><subject>TRANSGENIC PLANTS</subject><subject>Whole Plant, Environmental, and Stress Physiology</subject><subject>WILD RELATIVES</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkcuLFDEQxhtR1nH16E0hgnibNZVHPw57kMXHwoIH3XOoTqdnsvQkbSqzOP-9aWYY9ZIKfL_6qpKvql4DvwLg6uM8lyqvVDmb5km1Ai3FWmjVPq1WnJc7b9vuefWC6IFzDhLURXXRAYimEatqvg02OSQ3sOTIU8ZgHcuRxd9-wOwfHaNcFGI-sJww0MYFb9k8YcjE-gPLmDYu-7BhOwzB5zix3kc6hLxdDBcvu51iiqWFMr2sno04kXt1qpfV_ZfPP2--re--f729-XS3tjXIvMbyNAFNP4jejrLvB4l1PfZaCDFgq0Yt-lYL7WAY1YjgxAACrcZ66AboBcrL6vroO-_7nRusC2X7yczJ7zAdTERv_leC35pNfDSgW6F46X937I-UvSHrs7NbG0NwNhsNbS2bwnw4zUjx195RNjtP1k3lb1zck4FaSODNYrY-gjZFouTG8x7AzZKimedSpVFmSbHwb_9d_kyfYiv6-5OOZHEaSy7W0xkTddtqrQv25og9UI7pLKviUcvu75QRo8FNKg73P6DrGq46BUr-AXMju78</recordid><startdate>19970401</startdate><enddate>19970401</enddate><creator>Shen, B. (The University of Arizona, Tucson, AZ.)</creator><creator>Jensen, R.G</creator><creator>Bohnert, H.J</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>19970401</creationdate><title>Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts</title><author>Shen, B. (The University of Arizona, Tucson, AZ.) ; Jensen, R.G ; Bohnert, H.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c613t-a104217bd2bcf3bbd3a66fb5222da84f52b8525e1df4fa1e2d12ac5a6d9d1b2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>ANALISIS CUANTITATIVO</topic><topic>ANALYSE QUANTITATIVE</topic><topic>BACTERIA</topic><topic>BIOLOGICAL ADAPTATION</topic><topic>Biological and medical sciences</topic><topic>BIOLOGICAL PATHWAYS</topic><topic>BIOLOGY AND MEDICINE, BASIC STUDIES</topic><topic>BIOSINTESIS</topic><topic>BIOSYNTHESE</topic><topic>BIOSYNTHESIS</topic><topic>Carbon Dioxide - metabolism</topic><topic>CHEMICAL COMPOSITION</topic><topic>CHLOROPHYLLE</topic><topic>CHLOROPHYLLS</topic><topic>CHLOROPLASTE</topic><topic>CHLOROPLASTS</topic><topic>Chloroplasts - metabolism</topic><topic>CLOROFILAS</topic><topic>CLOROPLASTO</topic><topic>COMPOSICION QUIMICA</topic><topic>COMPOSITION CHIMIQUE</topic><topic>ECOLOGICAL CONCENTRATION</topic><topic>Enzymes</topic><topic>ENZYMIC ACTIVITY</topic><topic>Escherichia coli - genetics</topic><topic>EXPRESION GENICA</topic><topic>EXPRESSION DES GENES</topic><topic>FEUILLE</topic><topic>FOTOSINTESIS</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GENE</topic><topic>GENE EXPRESSION</topic><topic>GENE TRANSFER</topic><topic>GENES</topic><topic>Genes, Bacterial</topic><topic>GENETIC REGULATION</topic><topic>GENETICA</topic><topic>GENETICS</topic><topic>GENETIQUE</topic><topic>GENOTIPOS</topic><topic>GENOTYPE</topic><topic>GENOTYPES</topic><topic>HOJAS</topic><topic>HYDROXYL RADICALS</topic><topic>Kinetics</topic><topic>LEAVES</topic><topic>MANITOL</topic><topic>MANNITOL</topic><topic>Mannitol - metabolism</topic><topic>MANNITOL-1-PHOSPHATE DEHYDROGENASE</topic><topic>Mesophyll cells</topic><topic>Metabolism</topic><topic>Metabolism. Physicochemical requirements</topic><topic>METHYL VIOLOGEN</topic><topic>NET ASSIMILATION RATE</topic><topic>NICOTIANA</topic><topic>Nicotiana - physiology</topic><topic>NICOTIANA TABACUM</topic><topic>Oxidative Stress</topic><topic>OXIDOREDUCTASES</topic><topic>OXIDORREDUCTASAS</topic><topic>OXIGENO</topic><topic>OXYDOREDUCTASE</topic><topic>OXYGEN</topic><topic>OXYGENE</topic><topic>PHOTOSYNTHESE</topic><topic>PHOTOSYNTHESIS</topic><topic>Plant cells</topic><topic>Plant Leaves</topic><topic>Plant physiology and development</topic><topic>PLANTAS TRANSGENICAS</topic><topic>PLANTE TRANSGENIQUE</topic><topic>Plants</topic><topic>Plants, Genetically Modified - physiology</topic><topic>Plants, Toxic</topic><topic>QUANTITATIVE ANALYSIS</topic><topic>REACTIVE OXYGEN SPECIES</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>STRESS RESPONSE</topic><topic>Sugar Alcohol Dehydrogenases - biosynthesis</topic><topic>Sugar Alcohol Dehydrogenases - genetics</topic><topic>Superoxides</topic><topic>TRANSFERENCIA DE GENES</topic><topic>TRANSFERT DE GENE</topic><topic>TRANSGENIC PLANTS</topic><topic>Whole Plant, Environmental, and Stress Physiology</topic><topic>WILD RELATIVES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, B. (The University of Arizona, Tucson, AZ.)</creatorcontrib><creatorcontrib>Jensen, R.G</creatorcontrib><creatorcontrib>Bohnert, H.J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant Physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, B. (The University of Arizona, Tucson, AZ.)</au><au>Jensen, R.G</au><au>Bohnert, H.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts</atitle><jtitle>Plant Physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>1997-04-01</date><risdate>1997</risdate><volume>113</volume><issue>4</issue><spage>1177</spage><epage>1183</epage><pages>1177-1183</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>To investigate the potential role of a polyol, mannitol, in oxidative stress protection, a bacterial mannitol-1-phosphate dehydrogenase gene was targeted to chloroplasts by the addition of an amino-terminal transit peptide. Transgenic tobacco (Nicotiana tabacum) lines accumulate mannitol at concentrations ranging from 2.5 to 7 micromoles/g fresh weight. Line BS1-31 accumulated approximately 100 mM mannitol in chloroplasts and was identical to the wild type in phenotype and photosynthetic performance. The presence of mannitol in chloroplasts resulted in an increased resistance to methyl viologen (MV)-induced oxidative stress, documented by the increased retention of chlorophyll in transgenic leaf tissue following MV treatment. In the presence of MV, isolated mesophyll cells of BS1-31 exhibited higher CO2 fixation than the wild type. When the hydroxyl radical probe dimethyl sulfoxide was introduced into cells, the initial formation rate of methane sulfinic acid was significantly lower in cells containing mannitol in the chloroplast compartment than in wild-type cells, indicating an increased hydroxyl radical-scavenging capacity in BS1-31 tobacco. We suggest that the chloroplast location of mannitol can supplement endogenous radical-scavenging mechanisms and reduce oxidative damage of cells by hydroxyl radicals</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>9112772</pmid><doi>10.1104/pp.113.4.1177</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant Physiology (Bethesda), 1997-04, Vol.113 (4), p.1177-1183 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_158240 |
source | MEDLINE; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | ACTIVIDAD ENZIMATICA ACTIVITE ENZYMATIQUE ANALISIS CUANTITATIVO ANALYSE QUANTITATIVE BACTERIA BIOLOGICAL ADAPTATION Biological and medical sciences BIOLOGICAL PATHWAYS BIOLOGY AND MEDICINE, BASIC STUDIES BIOSINTESIS BIOSYNTHESE BIOSYNTHESIS Carbon Dioxide - metabolism CHEMICAL COMPOSITION CHLOROPHYLLE CHLOROPHYLLS CHLOROPLASTE CHLOROPLASTS Chloroplasts - metabolism CLOROFILAS CLOROPLASTO COMPOSICION QUIMICA COMPOSITION CHIMIQUE ECOLOGICAL CONCENTRATION Enzymes ENZYMIC ACTIVITY Escherichia coli - genetics EXPRESION GENICA EXPRESSION DES GENES FEUILLE FOTOSINTESIS Fundamental and applied biological sciences. Psychology GENE GENE EXPRESSION GENE TRANSFER GENES Genes, Bacterial GENETIC REGULATION GENETICA GENETICS GENETIQUE GENOTIPOS GENOTYPE GENOTYPES HOJAS HYDROXYL RADICALS Kinetics LEAVES MANITOL MANNITOL Mannitol - metabolism MANNITOL-1-PHOSPHATE DEHYDROGENASE Mesophyll cells Metabolism Metabolism. Physicochemical requirements METHYL VIOLOGEN NET ASSIMILATION RATE NICOTIANA Nicotiana - physiology NICOTIANA TABACUM Oxidative Stress OXIDOREDUCTASES OXIDORREDUCTASAS OXIGENO OXYDOREDUCTASE OXYGEN OXYGENE PHOTOSYNTHESE PHOTOSYNTHESIS Plant cells Plant Leaves Plant physiology and development PLANTAS TRANSGENICAS PLANTE TRANSGENIQUE Plants Plants, Genetically Modified - physiology Plants, Toxic QUANTITATIVE ANALYSIS REACTIVE OXYGEN SPECIES Recombinant Proteins - biosynthesis STRESS RESPONSE Sugar Alcohol Dehydrogenases - biosynthesis Sugar Alcohol Dehydrogenases - genetics Superoxides TRANSFERENCIA DE GENES TRANSFERT DE GENE TRANSGENIC PLANTS Whole Plant, Environmental, and Stress Physiology WILD RELATIVES |
title | Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20resistance%20to%20oxidative%20stress%20in%20transgenic%20plants%20by%20targeting%20mannitol%20biosynthesis%20to%20chloroplasts&rft.jtitle=Plant%20Physiology%20(Bethesda)&rft.au=Shen,%20B.%20(The%20University%20of%20Arizona,%20Tucson,%20AZ.)&rft.date=1997-04-01&rft.volume=113&rft.issue=4&rft.spage=1177&rft.epage=1183&rft.pages=1177-1183&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.113.4.1177&rft_dat=%3Cjstor_pubme%3E4277639%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16231070&rft_id=info:pmid/9112772&rft_jstor_id=4277639&rfr_iscdi=true |