Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts

To investigate the potential role of a polyol, mannitol, in oxidative stress protection, a bacterial mannitol-1-phosphate dehydrogenase gene was targeted to chloroplasts by the addition of an amino-terminal transit peptide. Transgenic tobacco (Nicotiana tabacum) lines accumulate mannitol at concentr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant Physiology (Bethesda) 1997-04, Vol.113 (4), p.1177-1183
Hauptverfasser: Shen, B. (The University of Arizona, Tucson, AZ.), Jensen, R.G, Bohnert, H.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1183
container_issue 4
container_start_page 1177
container_title Plant Physiology (Bethesda)
container_volume 113
creator Shen, B. (The University of Arizona, Tucson, AZ.)
Jensen, R.G
Bohnert, H.J
description To investigate the potential role of a polyol, mannitol, in oxidative stress protection, a bacterial mannitol-1-phosphate dehydrogenase gene was targeted to chloroplasts by the addition of an amino-terminal transit peptide. Transgenic tobacco (Nicotiana tabacum) lines accumulate mannitol at concentrations ranging from 2.5 to 7 micromoles/g fresh weight. Line BS1-31 accumulated approximately 100 mM mannitol in chloroplasts and was identical to the wild type in phenotype and photosynthetic performance. The presence of mannitol in chloroplasts resulted in an increased resistance to methyl viologen (MV)-induced oxidative stress, documented by the increased retention of chlorophyll in transgenic leaf tissue following MV treatment. In the presence of MV, isolated mesophyll cells of BS1-31 exhibited higher CO2 fixation than the wild type. When the hydroxyl radical probe dimethyl sulfoxide was introduced into cells, the initial formation rate of methane sulfinic acid was significantly lower in cells containing mannitol in the chloroplast compartment than in wild-type cells, indicating an increased hydroxyl radical-scavenging capacity in BS1-31 tobacco. We suggest that the chloroplast location of mannitol can supplement endogenous radical-scavenging mechanisms and reduce oxidative damage of cells by hydroxyl radicals
doi_str_mv 10.1104/pp.113.4.1177
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_158240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4277639</jstor_id><sourcerecordid>4277639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c613t-a104217bd2bcf3bbd3a66fb5222da84f52b8525e1df4fa1e2d12ac5a6d9d1b2a3</originalsourceid><addsrcrecordid>eNpVkcuLFDEQxhtR1nH16E0hgnibNZVHPw57kMXHwoIH3XOoTqdnsvQkbSqzOP-9aWYY9ZIKfL_6qpKvql4DvwLg6uM8lyqvVDmb5km1Ai3FWmjVPq1WnJc7b9vuefWC6IFzDhLURXXRAYimEatqvg02OSQ3sOTIU8ZgHcuRxd9-wOwfHaNcFGI-sJww0MYFb9k8YcjE-gPLmDYu-7BhOwzB5zix3kc6hLxdDBcvu51iiqWFMr2sno04kXt1qpfV_ZfPP2--re--f729-XS3tjXIvMbyNAFNP4jejrLvB4l1PfZaCDFgq0Yt-lYL7WAY1YjgxAACrcZ66AboBcrL6vroO-_7nRusC2X7yczJ7zAdTERv_leC35pNfDSgW6F46X937I-UvSHrs7NbG0NwNhsNbS2bwnw4zUjx195RNjtP1k3lb1zck4FaSODNYrY-gjZFouTG8x7AzZKimedSpVFmSbHwb_9d_kyfYiv6-5OOZHEaSy7W0xkTddtqrQv25og9UI7pLKviUcvu75QRo8FNKg73P6DrGq46BUr-AXMju78</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16231070</pqid></control><display><type>article</type><title>Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shen, B. (The University of Arizona, Tucson, AZ.) ; Jensen, R.G ; Bohnert, H.J</creator><creatorcontrib>Shen, B. (The University of Arizona, Tucson, AZ.) ; Jensen, R.G ; Bohnert, H.J</creatorcontrib><description>To investigate the potential role of a polyol, mannitol, in oxidative stress protection, a bacterial mannitol-1-phosphate dehydrogenase gene was targeted to chloroplasts by the addition of an amino-terminal transit peptide. Transgenic tobacco (Nicotiana tabacum) lines accumulate mannitol at concentrations ranging from 2.5 to 7 micromoles/g fresh weight. Line BS1-31 accumulated approximately 100 mM mannitol in chloroplasts and was identical to the wild type in phenotype and photosynthetic performance. The presence of mannitol in chloroplasts resulted in an increased resistance to methyl viologen (MV)-induced oxidative stress, documented by the increased retention of chlorophyll in transgenic leaf tissue following MV treatment. In the presence of MV, isolated mesophyll cells of BS1-31 exhibited higher CO2 fixation than the wild type. When the hydroxyl radical probe dimethyl sulfoxide was introduced into cells, the initial formation rate of methane sulfinic acid was significantly lower in cells containing mannitol in the chloroplast compartment than in wild-type cells, indicating an increased hydroxyl radical-scavenging capacity in BS1-31 tobacco. We suggest that the chloroplast location of mannitol can supplement endogenous radical-scavenging mechanisms and reduce oxidative damage of cells by hydroxyl radicals</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.113.4.1177</identifier><identifier>PMID: 9112772</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; ANALISIS CUANTITATIVO ; ANALYSE QUANTITATIVE ; BACTERIA ; BIOLOGICAL ADAPTATION ; Biological and medical sciences ; BIOLOGICAL PATHWAYS ; BIOLOGY AND MEDICINE, BASIC STUDIES ; BIOSINTESIS ; BIOSYNTHESE ; BIOSYNTHESIS ; Carbon Dioxide - metabolism ; CHEMICAL COMPOSITION ; CHLOROPHYLLE ; CHLOROPHYLLS ; CHLOROPLASTE ; CHLOROPLASTS ; Chloroplasts - metabolism ; CLOROFILAS ; CLOROPLASTO ; COMPOSICION QUIMICA ; COMPOSITION CHIMIQUE ; ECOLOGICAL CONCENTRATION ; Enzymes ; ENZYMIC ACTIVITY ; Escherichia coli - genetics ; EXPRESION GENICA ; EXPRESSION DES GENES ; FEUILLE ; FOTOSINTESIS ; Fundamental and applied biological sciences. Psychology ; GENE ; GENE EXPRESSION ; GENE TRANSFER ; GENES ; Genes, Bacterial ; GENETIC REGULATION ; GENETICA ; GENETICS ; GENETIQUE ; GENOTIPOS ; GENOTYPE ; GENOTYPES ; HOJAS ; HYDROXYL RADICALS ; Kinetics ; LEAVES ; MANITOL ; MANNITOL ; Mannitol - metabolism ; MANNITOL-1-PHOSPHATE DEHYDROGENASE ; Mesophyll cells ; Metabolism ; Metabolism. Physicochemical requirements ; METHYL VIOLOGEN ; NET ASSIMILATION RATE ; NICOTIANA ; Nicotiana - physiology ; NICOTIANA TABACUM ; Oxidative Stress ; OXIDOREDUCTASES ; OXIDORREDUCTASAS ; OXIGENO ; OXYDOREDUCTASE ; OXYGEN ; OXYGENE ; PHOTOSYNTHESE ; PHOTOSYNTHESIS ; Plant cells ; Plant Leaves ; Plant physiology and development ; PLANTAS TRANSGENICAS ; PLANTE TRANSGENIQUE ; Plants ; Plants, Genetically Modified - physiology ; Plants, Toxic ; QUANTITATIVE ANALYSIS ; REACTIVE OXYGEN SPECIES ; Recombinant Proteins - biosynthesis ; STRESS RESPONSE ; Sugar Alcohol Dehydrogenases - biosynthesis ; Sugar Alcohol Dehydrogenases - genetics ; Superoxides ; TRANSFERENCIA DE GENES ; TRANSFERT DE GENE ; TRANSGENIC PLANTS ; Whole Plant, Environmental, and Stress Physiology ; WILD RELATIVES</subject><ispartof>Plant Physiology (Bethesda), 1997-04, Vol.113 (4), p.1177-1183</ispartof><rights>Copyright 1997 American Society of Plant Physiologists</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c613t-a104217bd2bcf3bbd3a66fb5222da84f52b8525e1df4fa1e2d12ac5a6d9d1b2a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4277639$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4277639$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2688555$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9112772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/518637$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, B. (The University of Arizona, Tucson, AZ.)</creatorcontrib><creatorcontrib>Jensen, R.G</creatorcontrib><creatorcontrib>Bohnert, H.J</creatorcontrib><title>Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts</title><title>Plant Physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>To investigate the potential role of a polyol, mannitol, in oxidative stress protection, a bacterial mannitol-1-phosphate dehydrogenase gene was targeted to chloroplasts by the addition of an amino-terminal transit peptide. Transgenic tobacco (Nicotiana tabacum) lines accumulate mannitol at concentrations ranging from 2.5 to 7 micromoles/g fresh weight. Line BS1-31 accumulated approximately 100 mM mannitol in chloroplasts and was identical to the wild type in phenotype and photosynthetic performance. The presence of mannitol in chloroplasts resulted in an increased resistance to methyl viologen (MV)-induced oxidative stress, documented by the increased retention of chlorophyll in transgenic leaf tissue following MV treatment. In the presence of MV, isolated mesophyll cells of BS1-31 exhibited higher CO2 fixation than the wild type. When the hydroxyl radical probe dimethyl sulfoxide was introduced into cells, the initial formation rate of methane sulfinic acid was significantly lower in cells containing mannitol in the chloroplast compartment than in wild-type cells, indicating an increased hydroxyl radical-scavenging capacity in BS1-31 tobacco. We suggest that the chloroplast location of mannitol can supplement endogenous radical-scavenging mechanisms and reduce oxidative damage of cells by hydroxyl radicals</description><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>ANALISIS CUANTITATIVO</subject><subject>ANALYSE QUANTITATIVE</subject><subject>BACTERIA</subject><subject>BIOLOGICAL ADAPTATION</subject><subject>Biological and medical sciences</subject><subject>BIOLOGICAL PATHWAYS</subject><subject>BIOLOGY AND MEDICINE, BASIC STUDIES</subject><subject>BIOSINTESIS</subject><subject>BIOSYNTHESE</subject><subject>BIOSYNTHESIS</subject><subject>Carbon Dioxide - metabolism</subject><subject>CHEMICAL COMPOSITION</subject><subject>CHLOROPHYLLE</subject><subject>CHLOROPHYLLS</subject><subject>CHLOROPLASTE</subject><subject>CHLOROPLASTS</subject><subject>Chloroplasts - metabolism</subject><subject>CLOROFILAS</subject><subject>CLOROPLASTO</subject><subject>COMPOSICION QUIMICA</subject><subject>COMPOSITION CHIMIQUE</subject><subject>ECOLOGICAL CONCENTRATION</subject><subject>Enzymes</subject><subject>ENZYMIC ACTIVITY</subject><subject>Escherichia coli - genetics</subject><subject>EXPRESION GENICA</subject><subject>EXPRESSION DES GENES</subject><subject>FEUILLE</subject><subject>FOTOSINTESIS</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GENE</subject><subject>GENE EXPRESSION</subject><subject>GENE TRANSFER</subject><subject>GENES</subject><subject>Genes, Bacterial</subject><subject>GENETIC REGULATION</subject><subject>GENETICA</subject><subject>GENETICS</subject><subject>GENETIQUE</subject><subject>GENOTIPOS</subject><subject>GENOTYPE</subject><subject>GENOTYPES</subject><subject>HOJAS</subject><subject>HYDROXYL RADICALS</subject><subject>Kinetics</subject><subject>LEAVES</subject><subject>MANITOL</subject><subject>MANNITOL</subject><subject>Mannitol - metabolism</subject><subject>MANNITOL-1-PHOSPHATE DEHYDROGENASE</subject><subject>Mesophyll cells</subject><subject>Metabolism</subject><subject>Metabolism. Physicochemical requirements</subject><subject>METHYL VIOLOGEN</subject><subject>NET ASSIMILATION RATE</subject><subject>NICOTIANA</subject><subject>Nicotiana - physiology</subject><subject>NICOTIANA TABACUM</subject><subject>Oxidative Stress</subject><subject>OXIDOREDUCTASES</subject><subject>OXIDORREDUCTASAS</subject><subject>OXIGENO</subject><subject>OXYDOREDUCTASE</subject><subject>OXYGEN</subject><subject>OXYGENE</subject><subject>PHOTOSYNTHESE</subject><subject>PHOTOSYNTHESIS</subject><subject>Plant cells</subject><subject>Plant Leaves</subject><subject>Plant physiology and development</subject><subject>PLANTAS TRANSGENICAS</subject><subject>PLANTE TRANSGENIQUE</subject><subject>Plants</subject><subject>Plants, Genetically Modified - physiology</subject><subject>Plants, Toxic</subject><subject>QUANTITATIVE ANALYSIS</subject><subject>REACTIVE OXYGEN SPECIES</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>STRESS RESPONSE</subject><subject>Sugar Alcohol Dehydrogenases - biosynthesis</subject><subject>Sugar Alcohol Dehydrogenases - genetics</subject><subject>Superoxides</subject><subject>TRANSFERENCIA DE GENES</subject><subject>TRANSFERT DE GENE</subject><subject>TRANSGENIC PLANTS</subject><subject>Whole Plant, Environmental, and Stress Physiology</subject><subject>WILD RELATIVES</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkcuLFDEQxhtR1nH16E0hgnibNZVHPw57kMXHwoIH3XOoTqdnsvQkbSqzOP-9aWYY9ZIKfL_6qpKvql4DvwLg6uM8lyqvVDmb5km1Ai3FWmjVPq1WnJc7b9vuefWC6IFzDhLURXXRAYimEatqvg02OSQ3sOTIU8ZgHcuRxd9-wOwfHaNcFGI-sJww0MYFb9k8YcjE-gPLmDYu-7BhOwzB5zix3kc6hLxdDBcvu51iiqWFMr2sno04kXt1qpfV_ZfPP2--re--f729-XS3tjXIvMbyNAFNP4jejrLvB4l1PfZaCDFgq0Yt-lYL7WAY1YjgxAACrcZ66AboBcrL6vroO-_7nRusC2X7yczJ7zAdTERv_leC35pNfDSgW6F46X937I-UvSHrs7NbG0NwNhsNbS2bwnw4zUjx195RNjtP1k3lb1zck4FaSODNYrY-gjZFouTG8x7AzZKimedSpVFmSbHwb_9d_kyfYiv6-5OOZHEaSy7W0xkTddtqrQv25og9UI7pLKviUcvu75QRo8FNKg73P6DrGq46BUr-AXMju78</recordid><startdate>19970401</startdate><enddate>19970401</enddate><creator>Shen, B. (The University of Arizona, Tucson, AZ.)</creator><creator>Jensen, R.G</creator><creator>Bohnert, H.J</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>19970401</creationdate><title>Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts</title><author>Shen, B. (The University of Arizona, Tucson, AZ.) ; Jensen, R.G ; Bohnert, H.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c613t-a104217bd2bcf3bbd3a66fb5222da84f52b8525e1df4fa1e2d12ac5a6d9d1b2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>ANALISIS CUANTITATIVO</topic><topic>ANALYSE QUANTITATIVE</topic><topic>BACTERIA</topic><topic>BIOLOGICAL ADAPTATION</topic><topic>Biological and medical sciences</topic><topic>BIOLOGICAL PATHWAYS</topic><topic>BIOLOGY AND MEDICINE, BASIC STUDIES</topic><topic>BIOSINTESIS</topic><topic>BIOSYNTHESE</topic><topic>BIOSYNTHESIS</topic><topic>Carbon Dioxide - metabolism</topic><topic>CHEMICAL COMPOSITION</topic><topic>CHLOROPHYLLE</topic><topic>CHLOROPHYLLS</topic><topic>CHLOROPLASTE</topic><topic>CHLOROPLASTS</topic><topic>Chloroplasts - metabolism</topic><topic>CLOROFILAS</topic><topic>CLOROPLASTO</topic><topic>COMPOSICION QUIMICA</topic><topic>COMPOSITION CHIMIQUE</topic><topic>ECOLOGICAL CONCENTRATION</topic><topic>Enzymes</topic><topic>ENZYMIC ACTIVITY</topic><topic>Escherichia coli - genetics</topic><topic>EXPRESION GENICA</topic><topic>EXPRESSION DES GENES</topic><topic>FEUILLE</topic><topic>FOTOSINTESIS</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GENE</topic><topic>GENE EXPRESSION</topic><topic>GENE TRANSFER</topic><topic>GENES</topic><topic>Genes, Bacterial</topic><topic>GENETIC REGULATION</topic><topic>GENETICA</topic><topic>GENETICS</topic><topic>GENETIQUE</topic><topic>GENOTIPOS</topic><topic>GENOTYPE</topic><topic>GENOTYPES</topic><topic>HOJAS</topic><topic>HYDROXYL RADICALS</topic><topic>Kinetics</topic><topic>LEAVES</topic><topic>MANITOL</topic><topic>MANNITOL</topic><topic>Mannitol - metabolism</topic><topic>MANNITOL-1-PHOSPHATE DEHYDROGENASE</topic><topic>Mesophyll cells</topic><topic>Metabolism</topic><topic>Metabolism. Physicochemical requirements</topic><topic>METHYL VIOLOGEN</topic><topic>NET ASSIMILATION RATE</topic><topic>NICOTIANA</topic><topic>Nicotiana - physiology</topic><topic>NICOTIANA TABACUM</topic><topic>Oxidative Stress</topic><topic>OXIDOREDUCTASES</topic><topic>OXIDORREDUCTASAS</topic><topic>OXIGENO</topic><topic>OXYDOREDUCTASE</topic><topic>OXYGEN</topic><topic>OXYGENE</topic><topic>PHOTOSYNTHESE</topic><topic>PHOTOSYNTHESIS</topic><topic>Plant cells</topic><topic>Plant Leaves</topic><topic>Plant physiology and development</topic><topic>PLANTAS TRANSGENICAS</topic><topic>PLANTE TRANSGENIQUE</topic><topic>Plants</topic><topic>Plants, Genetically Modified - physiology</topic><topic>Plants, Toxic</topic><topic>QUANTITATIVE ANALYSIS</topic><topic>REACTIVE OXYGEN SPECIES</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>STRESS RESPONSE</topic><topic>Sugar Alcohol Dehydrogenases - biosynthesis</topic><topic>Sugar Alcohol Dehydrogenases - genetics</topic><topic>Superoxides</topic><topic>TRANSFERENCIA DE GENES</topic><topic>TRANSFERT DE GENE</topic><topic>TRANSGENIC PLANTS</topic><topic>Whole Plant, Environmental, and Stress Physiology</topic><topic>WILD RELATIVES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, B. (The University of Arizona, Tucson, AZ.)</creatorcontrib><creatorcontrib>Jensen, R.G</creatorcontrib><creatorcontrib>Bohnert, H.J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant Physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, B. (The University of Arizona, Tucson, AZ.)</au><au>Jensen, R.G</au><au>Bohnert, H.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts</atitle><jtitle>Plant Physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>1997-04-01</date><risdate>1997</risdate><volume>113</volume><issue>4</issue><spage>1177</spage><epage>1183</epage><pages>1177-1183</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>To investigate the potential role of a polyol, mannitol, in oxidative stress protection, a bacterial mannitol-1-phosphate dehydrogenase gene was targeted to chloroplasts by the addition of an amino-terminal transit peptide. Transgenic tobacco (Nicotiana tabacum) lines accumulate mannitol at concentrations ranging from 2.5 to 7 micromoles/g fresh weight. Line BS1-31 accumulated approximately 100 mM mannitol in chloroplasts and was identical to the wild type in phenotype and photosynthetic performance. The presence of mannitol in chloroplasts resulted in an increased resistance to methyl viologen (MV)-induced oxidative stress, documented by the increased retention of chlorophyll in transgenic leaf tissue following MV treatment. In the presence of MV, isolated mesophyll cells of BS1-31 exhibited higher CO2 fixation than the wild type. When the hydroxyl radical probe dimethyl sulfoxide was introduced into cells, the initial formation rate of methane sulfinic acid was significantly lower in cells containing mannitol in the chloroplast compartment than in wild-type cells, indicating an increased hydroxyl radical-scavenging capacity in BS1-31 tobacco. We suggest that the chloroplast location of mannitol can supplement endogenous radical-scavenging mechanisms and reduce oxidative damage of cells by hydroxyl radicals</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>9112772</pmid><doi>10.1104/pp.113.4.1177</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant Physiology (Bethesda), 1997-04, Vol.113 (4), p.1177-1183
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_158240
source MEDLINE; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects ACTIVIDAD ENZIMATICA
ACTIVITE ENZYMATIQUE
ANALISIS CUANTITATIVO
ANALYSE QUANTITATIVE
BACTERIA
BIOLOGICAL ADAPTATION
Biological and medical sciences
BIOLOGICAL PATHWAYS
BIOLOGY AND MEDICINE, BASIC STUDIES
BIOSINTESIS
BIOSYNTHESE
BIOSYNTHESIS
Carbon Dioxide - metabolism
CHEMICAL COMPOSITION
CHLOROPHYLLE
CHLOROPHYLLS
CHLOROPLASTE
CHLOROPLASTS
Chloroplasts - metabolism
CLOROFILAS
CLOROPLASTO
COMPOSICION QUIMICA
COMPOSITION CHIMIQUE
ECOLOGICAL CONCENTRATION
Enzymes
ENZYMIC ACTIVITY
Escherichia coli - genetics
EXPRESION GENICA
EXPRESSION DES GENES
FEUILLE
FOTOSINTESIS
Fundamental and applied biological sciences. Psychology
GENE
GENE EXPRESSION
GENE TRANSFER
GENES
Genes, Bacterial
GENETIC REGULATION
GENETICA
GENETICS
GENETIQUE
GENOTIPOS
GENOTYPE
GENOTYPES
HOJAS
HYDROXYL RADICALS
Kinetics
LEAVES
MANITOL
MANNITOL
Mannitol - metabolism
MANNITOL-1-PHOSPHATE DEHYDROGENASE
Mesophyll cells
Metabolism
Metabolism. Physicochemical requirements
METHYL VIOLOGEN
NET ASSIMILATION RATE
NICOTIANA
Nicotiana - physiology
NICOTIANA TABACUM
Oxidative Stress
OXIDOREDUCTASES
OXIDORREDUCTASAS
OXIGENO
OXYDOREDUCTASE
OXYGEN
OXYGENE
PHOTOSYNTHESE
PHOTOSYNTHESIS
Plant cells
Plant Leaves
Plant physiology and development
PLANTAS TRANSGENICAS
PLANTE TRANSGENIQUE
Plants
Plants, Genetically Modified - physiology
Plants, Toxic
QUANTITATIVE ANALYSIS
REACTIVE OXYGEN SPECIES
Recombinant Proteins - biosynthesis
STRESS RESPONSE
Sugar Alcohol Dehydrogenases - biosynthesis
Sugar Alcohol Dehydrogenases - genetics
Superoxides
TRANSFERENCIA DE GENES
TRANSFERT DE GENE
TRANSGENIC PLANTS
Whole Plant, Environmental, and Stress Physiology
WILD RELATIVES
title Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20resistance%20to%20oxidative%20stress%20in%20transgenic%20plants%20by%20targeting%20mannitol%20biosynthesis%20to%20chloroplasts&rft.jtitle=Plant%20Physiology%20(Bethesda)&rft.au=Shen,%20B.%20(The%20University%20of%20Arizona,%20Tucson,%20AZ.)&rft.date=1997-04-01&rft.volume=113&rft.issue=4&rft.spage=1177&rft.epage=1183&rft.pages=1177-1183&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.113.4.1177&rft_dat=%3Cjstor_pubme%3E4277639%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16231070&rft_id=info:pmid/9112772&rft_jstor_id=4277639&rfr_iscdi=true