Differential transcription of phycobiliprotein components in Rhodella violacea. Light and nitrogen effects on the 33-kilodalton phycoerythrin rod linker polypeptide, phycocyanin, and phycoerythrin transcripts

In Rhodella violacea phycoerythrin (PE) has two transcripts, a premessenger and a mature messenger (the gene contains an intron). Phycocyanin, which is plastic-encoded, and the 33-kD PE rod linker polypeptide, which is nuclear-encoded, have only one transcript. The PE premessenger had a rapid turnov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1996-11, Vol.112 (3), p.1045-1054
Hauptverfasser: Lichtle, C. (Ecole Normale Superieure, Paris, France.), Garnier, F, Bernard, C, Zabulon, G, Spilar, A, Thomas, J.C, Etienne, A.L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1054
container_issue 3
container_start_page 1045
container_title Plant physiology (Bethesda)
container_volume 112
creator Lichtle, C. (Ecole Normale Superieure, Paris, France.)
Garnier, F
Bernard, C
Zabulon, G
Spilar, A
Thomas, J.C
Etienne, A.L
description In Rhodella violacea phycoerythrin (PE) has two transcripts, a premessenger and a mature messenger (the gene contains an intron). Phycocyanin, which is plastic-encoded, and the 33-kD PE rod linker polypeptide, which is nuclear-encoded, have only one transcript. The PE premessenger had a rapid turnover; mature transcripts were stable in the light and more stable in the dark. In the presence of rifampicin, cells that shifted from dark to light exhibited an active translation of preexisting transcripts. There are indications of a modulation of the nuclear genome expression by the chloroplast; it may involve an unstable, plastic-encoded translational activator. All transcripts disappeared rapidly during nitrogen starvation. If nitrogen addition was carried out in the dark, active transcription and translation resumed as in light conditions, but ceased after 2 d. Both nitrogen and light were required for a total recovery after nitrogen starvation. Compared with the transcripts of phycobilisome components studied so far in cyanobacteria and Rhodophyceae, the mature transcripts of R. violacea are very stable when nitrogen is not limiting. The unstable PE premessenger is a good indicator of active transcription. This organism is therefore an interesting model to study the regulation of gene expression and the interactions between chloroplastic and nuclear genomes
doi_str_mv 10.1104/pp.112.3.1045
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_158031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4277415</jstor_id><sourcerecordid>4277415</sourcerecordid><originalsourceid>FETCH-LOGICAL-f331t-2e45a57e355bb89e9141254c5a4c6566ffedf275255478872924df8d182097853</originalsourceid><addsrcrecordid>eNqFUU1vFCEYJsamrtWjF6MJJ0-dlc-BOXgw9aNNNjFRe56wDLNDywIFtsn8S3-StLtp7cnTCzwf78P7AvAGoyXGiH2MsVaypMt64c_AAnNKGsKZfA4WCNUzkrJ7AV7mfIUQwhSzY3AsOyoZRgvw54sdR5OML1Y5WJLyWScbiw0ehhHGadZhbZ2NKRRjPdRhG4Ov9Azr7ecUBuOcgrc2OKWNWsKV3UwFKj9Ab0sKG-OhqR10FVTLMhlIaXNtXRiUK_XlvoNJc5lSNUxhgM76a5NgDG6OpiYZzOmepWflrT-9N38qe8ydX4GjUblsXh_qCbj89vX32Xmz-vH94uzzqhkpxaUhhnHFhaGcr9eyMx1muA5Nc8V0y9u2Rh5GIjjhnAkpBekIG0Y5YElQJySnJ-DT3jfu1lsz6DqSpFwfk92qNPdB2f4p4u3Ub8Jtj7lEFFf9h4M-hZudyaXf2qzvhulN2OW-9mgZF-K_RNyyulUqK_H9v4keohx2XfF3e_wql5AeYEaEYPjuQ2_38KhCrzbJ5v7yVycw6zpO_wJ5zMQH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16401338</pqid></control><display><type>article</type><title>Differential transcription of phycobiliprotein components in Rhodella violacea. Light and nitrogen effects on the 33-kilodalton phycoerythrin rod linker polypeptide, phycocyanin, and phycoerythrin transcripts</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Lichtle, C. (Ecole Normale Superieure, Paris, France.) ; Garnier, F ; Bernard, C ; Zabulon, G ; Spilar, A ; Thomas, J.C ; Etienne, A.L</creator><creatorcontrib>Lichtle, C. (Ecole Normale Superieure, Paris, France.) ; Garnier, F ; Bernard, C ; Zabulon, G ; Spilar, A ; Thomas, J.C ; Etienne, A.L</creatorcontrib><description>In Rhodella violacea phycoerythrin (PE) has two transcripts, a premessenger and a mature messenger (the gene contains an intron). Phycocyanin, which is plastic-encoded, and the 33-kD PE rod linker polypeptide, which is nuclear-encoded, have only one transcript. The PE premessenger had a rapid turnover; mature transcripts were stable in the light and more stable in the dark. In the presence of rifampicin, cells that shifted from dark to light exhibited an active translation of preexisting transcripts. There are indications of a modulation of the nuclear genome expression by the chloroplast; it may involve an unstable, plastic-encoded translational activator. All transcripts disappeared rapidly during nitrogen starvation. If nitrogen addition was carried out in the dark, active transcription and translation resumed as in light conditions, but ceased after 2 d. Both nitrogen and light were required for a total recovery after nitrogen starvation. Compared with the transcripts of phycobilisome components studied so far in cyanobacteria and Rhodophyceae, the mature transcripts of R. violacea are very stable when nitrogen is not limiting. The unstable PE premessenger is a good indicator of active transcription. This organism is therefore an interesting model to study the regulation of gene expression and the interactions between chloroplastic and nuclear genomes</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.112.3.1045</identifier><identifier>PMID: 8938410</identifier><language>eng</language><publisher>United States: American Society of Plant Physiologists</publisher><subject>ADAPTACION ; ADAPTATION ; ADN ; Amino Acid Sequence ; ANTIBIOTICOS ; ANTIBIOTIQUE ; ARN MENSAJERO ; ARN MESSAGER ; AZOTE ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - metabolism ; Bacterial Proteins - radiation effects ; Bacterial Proteins - ultrastructure ; Base Sequence ; Cell growth ; CELLULE ; CELULAS ; Chloroplasts ; COMPOSICION QUIMICA ; COMPOSITION CHIMIQUE ; CRECIMIENTO ; CROISSANCE ; Cyanobacteria ; Cyanobacteria - genetics ; Cyanobacteria - metabolism ; Cyanobacteria - ultrastructure ; Darkness ; EXPRESION GENICA ; EXPRESSION DES GENES ; FOTOPERIODISMO ; Gene Expression Regulation, Plant ; Gene Regulation and Molecular Genetics ; Genes ; Introns ; Light ; Light-Harvesting Protein Complexes ; LUMIERE ; LUZ ; Messenger RNA ; Molecular Sequence Data ; Nitrogen ; NITROGENO ; NOYAU CELLULAIRE ; NUCLEO ; OBSCURIDAD ; OBSCURITE ; PEPTIDE ; Peptide Fragments - chemistry ; PEPTIDOS ; PHOTOPERIODICITE ; Phycobilisomes ; Phycocyanin - biosynthesis ; Phycocyanin - chemistry ; Phycoerythrin - biosynthesis ; Phycoerythrin - chemistry ; PIGMENT ; PIGMENTOS ; Plant Proteins - biosynthesis ; Plant Proteins - metabolism ; Plant Proteins - radiation effects ; Plant Proteins - ultrastructure ; Plastids ; Plastids - metabolism ; Protein Biosynthesis ; PROTEINAS ; PROTEINE ; RHODOPHYCEAE ; RNA ; RNA Precursors - biosynthesis ; RNA, Messenger - biosynthesis ; SECUENCIA NUCLEOTIDICA ; Sequence Homology, Amino Acid ; SEQUENCE NUCLEOTIDIQUE ; Starvation ; TECHNIQUE DE CULTURE ; TECNICAS DE CULTIVO ; THYLAKOIDE ; TILACOIDES ; TRANSCRIPCION ; TRANSCRIPTION ; Transcription, Genetic</subject><ispartof>Plant physiology (Bethesda), 1996-11, Vol.112 (3), p.1045-1054</ispartof><rights>Copyright 1996 American Society of Plant Physiologists</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4277415$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4277415$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8938410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lichtle, C. (Ecole Normale Superieure, Paris, France.)</creatorcontrib><creatorcontrib>Garnier, F</creatorcontrib><creatorcontrib>Bernard, C</creatorcontrib><creatorcontrib>Zabulon, G</creatorcontrib><creatorcontrib>Spilar, A</creatorcontrib><creatorcontrib>Thomas, J.C</creatorcontrib><creatorcontrib>Etienne, A.L</creatorcontrib><title>Differential transcription of phycobiliprotein components in Rhodella violacea. Light and nitrogen effects on the 33-kilodalton phycoerythrin rod linker polypeptide, phycocyanin, and phycoerythrin transcripts</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>In Rhodella violacea phycoerythrin (PE) has two transcripts, a premessenger and a mature messenger (the gene contains an intron). Phycocyanin, which is plastic-encoded, and the 33-kD PE rod linker polypeptide, which is nuclear-encoded, have only one transcript. The PE premessenger had a rapid turnover; mature transcripts were stable in the light and more stable in the dark. In the presence of rifampicin, cells that shifted from dark to light exhibited an active translation of preexisting transcripts. There are indications of a modulation of the nuclear genome expression by the chloroplast; it may involve an unstable, plastic-encoded translational activator. All transcripts disappeared rapidly during nitrogen starvation. If nitrogen addition was carried out in the dark, active transcription and translation resumed as in light conditions, but ceased after 2 d. Both nitrogen and light were required for a total recovery after nitrogen starvation. Compared with the transcripts of phycobilisome components studied so far in cyanobacteria and Rhodophyceae, the mature transcripts of R. violacea are very stable when nitrogen is not limiting. The unstable PE premessenger is a good indicator of active transcription. This organism is therefore an interesting model to study the regulation of gene expression and the interactions between chloroplastic and nuclear genomes</description><subject>ADAPTACION</subject><subject>ADAPTATION</subject><subject>ADN</subject><subject>Amino Acid Sequence</subject><subject>ANTIBIOTICOS</subject><subject>ANTIBIOTIQUE</subject><subject>ARN MENSAJERO</subject><subject>ARN MESSAGER</subject><subject>AZOTE</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Proteins - radiation effects</subject><subject>Bacterial Proteins - ultrastructure</subject><subject>Base Sequence</subject><subject>Cell growth</subject><subject>CELLULE</subject><subject>CELULAS</subject><subject>Chloroplasts</subject><subject>COMPOSICION QUIMICA</subject><subject>COMPOSITION CHIMIQUE</subject><subject>CRECIMIENTO</subject><subject>CROISSANCE</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanobacteria - metabolism</subject><subject>Cyanobacteria - ultrastructure</subject><subject>Darkness</subject><subject>EXPRESION GENICA</subject><subject>EXPRESSION DES GENES</subject><subject>FOTOPERIODISMO</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Regulation and Molecular Genetics</subject><subject>Genes</subject><subject>Introns</subject><subject>Light</subject><subject>Light-Harvesting Protein Complexes</subject><subject>LUMIERE</subject><subject>LUZ</subject><subject>Messenger RNA</subject><subject>Molecular Sequence Data</subject><subject>Nitrogen</subject><subject>NITROGENO</subject><subject>NOYAU CELLULAIRE</subject><subject>NUCLEO</subject><subject>OBSCURIDAD</subject><subject>OBSCURITE</subject><subject>PEPTIDE</subject><subject>Peptide Fragments - chemistry</subject><subject>PEPTIDOS</subject><subject>PHOTOPERIODICITE</subject><subject>Phycobilisomes</subject><subject>Phycocyanin - biosynthesis</subject><subject>Phycocyanin - chemistry</subject><subject>Phycoerythrin - biosynthesis</subject><subject>Phycoerythrin - chemistry</subject><subject>PIGMENT</subject><subject>PIGMENTOS</subject><subject>Plant Proteins - biosynthesis</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Proteins - radiation effects</subject><subject>Plant Proteins - ultrastructure</subject><subject>Plastids</subject><subject>Plastids - metabolism</subject><subject>Protein Biosynthesis</subject><subject>PROTEINAS</subject><subject>PROTEINE</subject><subject>RHODOPHYCEAE</subject><subject>RNA</subject><subject>RNA Precursors - biosynthesis</subject><subject>RNA, Messenger - biosynthesis</subject><subject>SECUENCIA NUCLEOTIDICA</subject><subject>Sequence Homology, Amino Acid</subject><subject>SEQUENCE NUCLEOTIDIQUE</subject><subject>Starvation</subject><subject>TECHNIQUE DE CULTURE</subject><subject>TECNICAS DE CULTIVO</subject><subject>THYLAKOIDE</subject><subject>TILACOIDES</subject><subject>TRANSCRIPCION</subject><subject>TRANSCRIPTION</subject><subject>Transcription, Genetic</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1vFCEYJsamrtWjF6MJJ0-dlc-BOXgw9aNNNjFRe56wDLNDywIFtsn8S3-StLtp7cnTCzwf78P7AvAGoyXGiH2MsVaypMt64c_AAnNKGsKZfA4WCNUzkrJ7AV7mfIUQwhSzY3AsOyoZRgvw54sdR5OML1Y5WJLyWScbiw0ehhHGadZhbZ2NKRRjPdRhG4Ov9Azr7ecUBuOcgrc2OKWNWsKV3UwFKj9Ab0sKG-OhqR10FVTLMhlIaXNtXRiUK_XlvoNJc5lSNUxhgM76a5NgDG6OpiYZzOmepWflrT-9N38qe8ydX4GjUblsXh_qCbj89vX32Xmz-vH94uzzqhkpxaUhhnHFhaGcr9eyMx1muA5Nc8V0y9u2Rh5GIjjhnAkpBekIG0Y5YElQJySnJ-DT3jfu1lsz6DqSpFwfk92qNPdB2f4p4u3Ub8Jtj7lEFFf9h4M-hZudyaXf2qzvhulN2OW-9mgZF-K_RNyyulUqK_H9v4keohx2XfF3e_wql5AeYEaEYPjuQ2_38KhCrzbJ5v7yVycw6zpO_wJ5zMQH</recordid><startdate>19961101</startdate><enddate>19961101</enddate><creator>Lichtle, C. (Ecole Normale Superieure, Paris, France.)</creator><creator>Garnier, F</creator><creator>Bernard, C</creator><creator>Zabulon, G</creator><creator>Spilar, A</creator><creator>Thomas, J.C</creator><creator>Etienne, A.L</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19961101</creationdate><title>Differential transcription of phycobiliprotein components in Rhodella violacea. Light and nitrogen effects on the 33-kilodalton phycoerythrin rod linker polypeptide, phycocyanin, and phycoerythrin transcripts</title><author>Lichtle, C. (Ecole Normale Superieure, Paris, France.) ; Garnier, F ; Bernard, C ; Zabulon, G ; Spilar, A ; Thomas, J.C ; Etienne, A.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f331t-2e45a57e355bb89e9141254c5a4c6566ffedf275255478872924df8d182097853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>ADAPTACION</topic><topic>ADAPTATION</topic><topic>ADN</topic><topic>Amino Acid Sequence</topic><topic>ANTIBIOTICOS</topic><topic>ANTIBIOTIQUE</topic><topic>ARN MENSAJERO</topic><topic>ARN MESSAGER</topic><topic>AZOTE</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Proteins - radiation effects</topic><topic>Bacterial Proteins - ultrastructure</topic><topic>Base Sequence</topic><topic>Cell growth</topic><topic>CELLULE</topic><topic>CELULAS</topic><topic>Chloroplasts</topic><topic>COMPOSICION QUIMICA</topic><topic>COMPOSITION CHIMIQUE</topic><topic>CRECIMIENTO</topic><topic>CROISSANCE</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanobacteria - metabolism</topic><topic>Cyanobacteria - ultrastructure</topic><topic>Darkness</topic><topic>EXPRESION GENICA</topic><topic>EXPRESSION DES GENES</topic><topic>FOTOPERIODISMO</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Regulation and Molecular Genetics</topic><topic>Genes</topic><topic>Introns</topic><topic>Light</topic><topic>Light-Harvesting Protein Complexes</topic><topic>LUMIERE</topic><topic>LUZ</topic><topic>Messenger RNA</topic><topic>Molecular Sequence Data</topic><topic>Nitrogen</topic><topic>NITROGENO</topic><topic>NOYAU CELLULAIRE</topic><topic>NUCLEO</topic><topic>OBSCURIDAD</topic><topic>OBSCURITE</topic><topic>PEPTIDE</topic><topic>Peptide Fragments - chemistry</topic><topic>PEPTIDOS</topic><topic>PHOTOPERIODICITE</topic><topic>Phycobilisomes</topic><topic>Phycocyanin - biosynthesis</topic><topic>Phycocyanin - chemistry</topic><topic>Phycoerythrin - biosynthesis</topic><topic>Phycoerythrin - chemistry</topic><topic>PIGMENT</topic><topic>PIGMENTOS</topic><topic>Plant Proteins - biosynthesis</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Proteins - radiation effects</topic><topic>Plant Proteins - ultrastructure</topic><topic>Plastids</topic><topic>Plastids - metabolism</topic><topic>Protein Biosynthesis</topic><topic>PROTEINAS</topic><topic>PROTEINE</topic><topic>RHODOPHYCEAE</topic><topic>RNA</topic><topic>RNA Precursors - biosynthesis</topic><topic>RNA, Messenger - biosynthesis</topic><topic>SECUENCIA NUCLEOTIDICA</topic><topic>Sequence Homology, Amino Acid</topic><topic>SEQUENCE NUCLEOTIDIQUE</topic><topic>Starvation</topic><topic>TECHNIQUE DE CULTURE</topic><topic>TECNICAS DE CULTIVO</topic><topic>THYLAKOIDE</topic><topic>TILACOIDES</topic><topic>TRANSCRIPCION</topic><topic>TRANSCRIPTION</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lichtle, C. (Ecole Normale Superieure, Paris, France.)</creatorcontrib><creatorcontrib>Garnier, F</creatorcontrib><creatorcontrib>Bernard, C</creatorcontrib><creatorcontrib>Zabulon, G</creatorcontrib><creatorcontrib>Spilar, A</creatorcontrib><creatorcontrib>Thomas, J.C</creatorcontrib><creatorcontrib>Etienne, A.L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lichtle, C. (Ecole Normale Superieure, Paris, France.)</au><au>Garnier, F</au><au>Bernard, C</au><au>Zabulon, G</au><au>Spilar, A</au><au>Thomas, J.C</au><au>Etienne, A.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential transcription of phycobiliprotein components in Rhodella violacea. Light and nitrogen effects on the 33-kilodalton phycoerythrin rod linker polypeptide, phycocyanin, and phycoerythrin transcripts</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>1996-11-01</date><risdate>1996</risdate><volume>112</volume><issue>3</issue><spage>1045</spage><epage>1054</epage><pages>1045-1054</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>In Rhodella violacea phycoerythrin (PE) has two transcripts, a premessenger and a mature messenger (the gene contains an intron). Phycocyanin, which is plastic-encoded, and the 33-kD PE rod linker polypeptide, which is nuclear-encoded, have only one transcript. The PE premessenger had a rapid turnover; mature transcripts were stable in the light and more stable in the dark. In the presence of rifampicin, cells that shifted from dark to light exhibited an active translation of preexisting transcripts. There are indications of a modulation of the nuclear genome expression by the chloroplast; it may involve an unstable, plastic-encoded translational activator. All transcripts disappeared rapidly during nitrogen starvation. If nitrogen addition was carried out in the dark, active transcription and translation resumed as in light conditions, but ceased after 2 d. Both nitrogen and light were required for a total recovery after nitrogen starvation. Compared with the transcripts of phycobilisome components studied so far in cyanobacteria and Rhodophyceae, the mature transcripts of R. violacea are very stable when nitrogen is not limiting. The unstable PE premessenger is a good indicator of active transcription. This organism is therefore an interesting model to study the regulation of gene expression and the interactions between chloroplastic and nuclear genomes</abstract><cop>United States</cop><pub>American Society of Plant Physiologists</pub><pmid>8938410</pmid><doi>10.1104/pp.112.3.1045</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 1996-11, Vol.112 (3), p.1045-1054
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_158031
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects ADAPTACION
ADAPTATION
ADN
Amino Acid Sequence
ANTIBIOTICOS
ANTIBIOTIQUE
ARN MENSAJERO
ARN MESSAGER
AZOTE
Bacterial Proteins - biosynthesis
Bacterial Proteins - metabolism
Bacterial Proteins - radiation effects
Bacterial Proteins - ultrastructure
Base Sequence
Cell growth
CELLULE
CELULAS
Chloroplasts
COMPOSICION QUIMICA
COMPOSITION CHIMIQUE
CRECIMIENTO
CROISSANCE
Cyanobacteria
Cyanobacteria - genetics
Cyanobacteria - metabolism
Cyanobacteria - ultrastructure
Darkness
EXPRESION GENICA
EXPRESSION DES GENES
FOTOPERIODISMO
Gene Expression Regulation, Plant
Gene Regulation and Molecular Genetics
Genes
Introns
Light
Light-Harvesting Protein Complexes
LUMIERE
LUZ
Messenger RNA
Molecular Sequence Data
Nitrogen
NITROGENO
NOYAU CELLULAIRE
NUCLEO
OBSCURIDAD
OBSCURITE
PEPTIDE
Peptide Fragments - chemistry
PEPTIDOS
PHOTOPERIODICITE
Phycobilisomes
Phycocyanin - biosynthesis
Phycocyanin - chemistry
Phycoerythrin - biosynthesis
Phycoerythrin - chemistry
PIGMENT
PIGMENTOS
Plant Proteins - biosynthesis
Plant Proteins - metabolism
Plant Proteins - radiation effects
Plant Proteins - ultrastructure
Plastids
Plastids - metabolism
Protein Biosynthesis
PROTEINAS
PROTEINE
RHODOPHYCEAE
RNA
RNA Precursors - biosynthesis
RNA, Messenger - biosynthesis
SECUENCIA NUCLEOTIDICA
Sequence Homology, Amino Acid
SEQUENCE NUCLEOTIDIQUE
Starvation
TECHNIQUE DE CULTURE
TECNICAS DE CULTIVO
THYLAKOIDE
TILACOIDES
TRANSCRIPCION
TRANSCRIPTION
Transcription, Genetic
title Differential transcription of phycobiliprotein components in Rhodella violacea. Light and nitrogen effects on the 33-kilodalton phycoerythrin rod linker polypeptide, phycocyanin, and phycoerythrin transcripts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20transcription%20of%20phycobiliprotein%20components%20in%20Rhodella%20violacea.%20Light%20and%20nitrogen%20effects%20on%20the%2033-kilodalton%20phycoerythrin%20rod%20linker%20polypeptide,%20phycocyanin,%20and%20phycoerythrin%20transcripts&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Lichtle,%20C.%20(Ecole%20Normale%20Superieure,%20Paris,%20France.)&rft.date=1996-11-01&rft.volume=112&rft.issue=3&rft.spage=1045&rft.epage=1054&rft.pages=1045-1054&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.112.3.1045&rft_dat=%3Cjstor_pubme%3E4277415%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16401338&rft_id=info:pmid/8938410&rft_jstor_id=4277415&rfr_iscdi=true