Differential transcription of phycobiliprotein components in Rhodella violacea. Light and nitrogen effects on the 33-kilodalton phycoerythrin rod linker polypeptide, phycocyanin, and phycoerythrin transcripts
In Rhodella violacea phycoerythrin (PE) has two transcripts, a premessenger and a mature messenger (the gene contains an intron). Phycocyanin, which is plastic-encoded, and the 33-kD PE rod linker polypeptide, which is nuclear-encoded, have only one transcript. The PE premessenger had a rapid turnov...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 1996-11, Vol.112 (3), p.1045-1054 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1054 |
---|---|
container_issue | 3 |
container_start_page | 1045 |
container_title | Plant physiology (Bethesda) |
container_volume | 112 |
creator | Lichtle, C. (Ecole Normale Superieure, Paris, France.) Garnier, F Bernard, C Zabulon, G Spilar, A Thomas, J.C Etienne, A.L |
description | In Rhodella violacea phycoerythrin (PE) has two transcripts, a premessenger and a mature messenger (the gene contains an intron). Phycocyanin, which is plastic-encoded, and the 33-kD PE rod linker polypeptide, which is nuclear-encoded, have only one transcript. The PE premessenger had a rapid turnover; mature transcripts were stable in the light and more stable in the dark. In the presence of rifampicin, cells that shifted from dark to light exhibited an active translation of preexisting transcripts. There are indications of a modulation of the nuclear genome expression by the chloroplast; it may involve an unstable, plastic-encoded translational activator. All transcripts disappeared rapidly during nitrogen starvation. If nitrogen addition was carried out in the dark, active transcription and translation resumed as in light conditions, but ceased after 2 d. Both nitrogen and light were required for a total recovery after nitrogen starvation. Compared with the transcripts of phycobilisome components studied so far in cyanobacteria and Rhodophyceae, the mature transcripts of R. violacea are very stable when nitrogen is not limiting. The unstable PE premessenger is a good indicator of active transcription. This organism is therefore an interesting model to study the regulation of gene expression and the interactions between chloroplastic and nuclear genomes |
doi_str_mv | 10.1104/pp.112.3.1045 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_158031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4277415</jstor_id><sourcerecordid>4277415</sourcerecordid><originalsourceid>FETCH-LOGICAL-f331t-2e45a57e355bb89e9141254c5a4c6566ffedf275255478872924df8d182097853</originalsourceid><addsrcrecordid>eNqFUU1vFCEYJsamrtWjF6MJJ0-dlc-BOXgw9aNNNjFRe56wDLNDywIFtsn8S3-StLtp7cnTCzwf78P7AvAGoyXGiH2MsVaypMt64c_AAnNKGsKZfA4WCNUzkrJ7AV7mfIUQwhSzY3AsOyoZRgvw54sdR5OML1Y5WJLyWScbiw0ehhHGadZhbZ2NKRRjPdRhG4Ov9Azr7ecUBuOcgrc2OKWNWsKV3UwFKj9Ab0sKG-OhqR10FVTLMhlIaXNtXRiUK_XlvoNJc5lSNUxhgM76a5NgDG6OpiYZzOmepWflrT-9N38qe8ydX4GjUblsXh_qCbj89vX32Xmz-vH94uzzqhkpxaUhhnHFhaGcr9eyMx1muA5Nc8V0y9u2Rh5GIjjhnAkpBekIG0Y5YElQJySnJ-DT3jfu1lsz6DqSpFwfk92qNPdB2f4p4u3Ub8Jtj7lEFFf9h4M-hZudyaXf2qzvhulN2OW-9mgZF-K_RNyyulUqK_H9v4keohx2XfF3e_wql5AeYEaEYPjuQ2_38KhCrzbJ5v7yVycw6zpO_wJ5zMQH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16401338</pqid></control><display><type>article</type><title>Differential transcription of phycobiliprotein components in Rhodella violacea. Light and nitrogen effects on the 33-kilodalton phycoerythrin rod linker polypeptide, phycocyanin, and phycoerythrin transcripts</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Lichtle, C. (Ecole Normale Superieure, Paris, France.) ; Garnier, F ; Bernard, C ; Zabulon, G ; Spilar, A ; Thomas, J.C ; Etienne, A.L</creator><creatorcontrib>Lichtle, C. (Ecole Normale Superieure, Paris, France.) ; Garnier, F ; Bernard, C ; Zabulon, G ; Spilar, A ; Thomas, J.C ; Etienne, A.L</creatorcontrib><description>In Rhodella violacea phycoerythrin (PE) has two transcripts, a premessenger and a mature messenger (the gene contains an intron). Phycocyanin, which is plastic-encoded, and the 33-kD PE rod linker polypeptide, which is nuclear-encoded, have only one transcript. The PE premessenger had a rapid turnover; mature transcripts were stable in the light and more stable in the dark. In the presence of rifampicin, cells that shifted from dark to light exhibited an active translation of preexisting transcripts. There are indications of a modulation of the nuclear genome expression by the chloroplast; it may involve an unstable, plastic-encoded translational activator. All transcripts disappeared rapidly during nitrogen starvation. If nitrogen addition was carried out in the dark, active transcription and translation resumed as in light conditions, but ceased after 2 d. Both nitrogen and light were required for a total recovery after nitrogen starvation. Compared with the transcripts of phycobilisome components studied so far in cyanobacteria and Rhodophyceae, the mature transcripts of R. violacea are very stable when nitrogen is not limiting. The unstable PE premessenger is a good indicator of active transcription. This organism is therefore an interesting model to study the regulation of gene expression and the interactions between chloroplastic and nuclear genomes</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.112.3.1045</identifier><identifier>PMID: 8938410</identifier><language>eng</language><publisher>United States: American Society of Plant Physiologists</publisher><subject>ADAPTACION ; ADAPTATION ; ADN ; Amino Acid Sequence ; ANTIBIOTICOS ; ANTIBIOTIQUE ; ARN MENSAJERO ; ARN MESSAGER ; AZOTE ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - metabolism ; Bacterial Proteins - radiation effects ; Bacterial Proteins - ultrastructure ; Base Sequence ; Cell growth ; CELLULE ; CELULAS ; Chloroplasts ; COMPOSICION QUIMICA ; COMPOSITION CHIMIQUE ; CRECIMIENTO ; CROISSANCE ; Cyanobacteria ; Cyanobacteria - genetics ; Cyanobacteria - metabolism ; Cyanobacteria - ultrastructure ; Darkness ; EXPRESION GENICA ; EXPRESSION DES GENES ; FOTOPERIODISMO ; Gene Expression Regulation, Plant ; Gene Regulation and Molecular Genetics ; Genes ; Introns ; Light ; Light-Harvesting Protein Complexes ; LUMIERE ; LUZ ; Messenger RNA ; Molecular Sequence Data ; Nitrogen ; NITROGENO ; NOYAU CELLULAIRE ; NUCLEO ; OBSCURIDAD ; OBSCURITE ; PEPTIDE ; Peptide Fragments - chemistry ; PEPTIDOS ; PHOTOPERIODICITE ; Phycobilisomes ; Phycocyanin - biosynthesis ; Phycocyanin - chemistry ; Phycoerythrin - biosynthesis ; Phycoerythrin - chemistry ; PIGMENT ; PIGMENTOS ; Plant Proteins - biosynthesis ; Plant Proteins - metabolism ; Plant Proteins - radiation effects ; Plant Proteins - ultrastructure ; Plastids ; Plastids - metabolism ; Protein Biosynthesis ; PROTEINAS ; PROTEINE ; RHODOPHYCEAE ; RNA ; RNA Precursors - biosynthesis ; RNA, Messenger - biosynthesis ; SECUENCIA NUCLEOTIDICA ; Sequence Homology, Amino Acid ; SEQUENCE NUCLEOTIDIQUE ; Starvation ; TECHNIQUE DE CULTURE ; TECNICAS DE CULTIVO ; THYLAKOIDE ; TILACOIDES ; TRANSCRIPCION ; TRANSCRIPTION ; Transcription, Genetic</subject><ispartof>Plant physiology (Bethesda), 1996-11, Vol.112 (3), p.1045-1054</ispartof><rights>Copyright 1996 American Society of Plant Physiologists</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4277415$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4277415$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8938410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lichtle, C. (Ecole Normale Superieure, Paris, France.)</creatorcontrib><creatorcontrib>Garnier, F</creatorcontrib><creatorcontrib>Bernard, C</creatorcontrib><creatorcontrib>Zabulon, G</creatorcontrib><creatorcontrib>Spilar, A</creatorcontrib><creatorcontrib>Thomas, J.C</creatorcontrib><creatorcontrib>Etienne, A.L</creatorcontrib><title>Differential transcription of phycobiliprotein components in Rhodella violacea. Light and nitrogen effects on the 33-kilodalton phycoerythrin rod linker polypeptide, phycocyanin, and phycoerythrin transcripts</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>In Rhodella violacea phycoerythrin (PE) has two transcripts, a premessenger and a mature messenger (the gene contains an intron). Phycocyanin, which is plastic-encoded, and the 33-kD PE rod linker polypeptide, which is nuclear-encoded, have only one transcript. The PE premessenger had a rapid turnover; mature transcripts were stable in the light and more stable in the dark. In the presence of rifampicin, cells that shifted from dark to light exhibited an active translation of preexisting transcripts. There are indications of a modulation of the nuclear genome expression by the chloroplast; it may involve an unstable, plastic-encoded translational activator. All transcripts disappeared rapidly during nitrogen starvation. If nitrogen addition was carried out in the dark, active transcription and translation resumed as in light conditions, but ceased after 2 d. Both nitrogen and light were required for a total recovery after nitrogen starvation. Compared with the transcripts of phycobilisome components studied so far in cyanobacteria and Rhodophyceae, the mature transcripts of R. violacea are very stable when nitrogen is not limiting. The unstable PE premessenger is a good indicator of active transcription. This organism is therefore an interesting model to study the regulation of gene expression and the interactions between chloroplastic and nuclear genomes</description><subject>ADAPTACION</subject><subject>ADAPTATION</subject><subject>ADN</subject><subject>Amino Acid Sequence</subject><subject>ANTIBIOTICOS</subject><subject>ANTIBIOTIQUE</subject><subject>ARN MENSAJERO</subject><subject>ARN MESSAGER</subject><subject>AZOTE</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Proteins - radiation effects</subject><subject>Bacterial Proteins - ultrastructure</subject><subject>Base Sequence</subject><subject>Cell growth</subject><subject>CELLULE</subject><subject>CELULAS</subject><subject>Chloroplasts</subject><subject>COMPOSICION QUIMICA</subject><subject>COMPOSITION CHIMIQUE</subject><subject>CRECIMIENTO</subject><subject>CROISSANCE</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanobacteria - metabolism</subject><subject>Cyanobacteria - ultrastructure</subject><subject>Darkness</subject><subject>EXPRESION GENICA</subject><subject>EXPRESSION DES GENES</subject><subject>FOTOPERIODISMO</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Regulation and Molecular Genetics</subject><subject>Genes</subject><subject>Introns</subject><subject>Light</subject><subject>Light-Harvesting Protein Complexes</subject><subject>LUMIERE</subject><subject>LUZ</subject><subject>Messenger RNA</subject><subject>Molecular Sequence Data</subject><subject>Nitrogen</subject><subject>NITROGENO</subject><subject>NOYAU CELLULAIRE</subject><subject>NUCLEO</subject><subject>OBSCURIDAD</subject><subject>OBSCURITE</subject><subject>PEPTIDE</subject><subject>Peptide Fragments - chemistry</subject><subject>PEPTIDOS</subject><subject>PHOTOPERIODICITE</subject><subject>Phycobilisomes</subject><subject>Phycocyanin - biosynthesis</subject><subject>Phycocyanin - chemistry</subject><subject>Phycoerythrin - biosynthesis</subject><subject>Phycoerythrin - chemistry</subject><subject>PIGMENT</subject><subject>PIGMENTOS</subject><subject>Plant Proteins - biosynthesis</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Proteins - radiation effects</subject><subject>Plant Proteins - ultrastructure</subject><subject>Plastids</subject><subject>Plastids - metabolism</subject><subject>Protein Biosynthesis</subject><subject>PROTEINAS</subject><subject>PROTEINE</subject><subject>RHODOPHYCEAE</subject><subject>RNA</subject><subject>RNA Precursors - biosynthesis</subject><subject>RNA, Messenger - biosynthesis</subject><subject>SECUENCIA NUCLEOTIDICA</subject><subject>Sequence Homology, Amino Acid</subject><subject>SEQUENCE NUCLEOTIDIQUE</subject><subject>Starvation</subject><subject>TECHNIQUE DE CULTURE</subject><subject>TECNICAS DE CULTIVO</subject><subject>THYLAKOIDE</subject><subject>TILACOIDES</subject><subject>TRANSCRIPCION</subject><subject>TRANSCRIPTION</subject><subject>Transcription, Genetic</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1vFCEYJsamrtWjF6MJJ0-dlc-BOXgw9aNNNjFRe56wDLNDywIFtsn8S3-StLtp7cnTCzwf78P7AvAGoyXGiH2MsVaypMt64c_AAnNKGsKZfA4WCNUzkrJ7AV7mfIUQwhSzY3AsOyoZRgvw54sdR5OML1Y5WJLyWScbiw0ehhHGadZhbZ2NKRRjPdRhG4Ov9Azr7ecUBuOcgrc2OKWNWsKV3UwFKj9Ab0sKG-OhqR10FVTLMhlIaXNtXRiUK_XlvoNJc5lSNUxhgM76a5NgDG6OpiYZzOmepWflrT-9N38qe8ydX4GjUblsXh_qCbj89vX32Xmz-vH94uzzqhkpxaUhhnHFhaGcr9eyMx1muA5Nc8V0y9u2Rh5GIjjhnAkpBekIG0Y5YElQJySnJ-DT3jfu1lsz6DqSpFwfk92qNPdB2f4p4u3Ub8Jtj7lEFFf9h4M-hZudyaXf2qzvhulN2OW-9mgZF-K_RNyyulUqK_H9v4keohx2XfF3e_wql5AeYEaEYPjuQ2_38KhCrzbJ5v7yVycw6zpO_wJ5zMQH</recordid><startdate>19961101</startdate><enddate>19961101</enddate><creator>Lichtle, C. (Ecole Normale Superieure, Paris, France.)</creator><creator>Garnier, F</creator><creator>Bernard, C</creator><creator>Zabulon, G</creator><creator>Spilar, A</creator><creator>Thomas, J.C</creator><creator>Etienne, A.L</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19961101</creationdate><title>Differential transcription of phycobiliprotein components in Rhodella violacea. Light and nitrogen effects on the 33-kilodalton phycoerythrin rod linker polypeptide, phycocyanin, and phycoerythrin transcripts</title><author>Lichtle, C. (Ecole Normale Superieure, Paris, France.) ; Garnier, F ; Bernard, C ; Zabulon, G ; Spilar, A ; Thomas, J.C ; Etienne, A.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f331t-2e45a57e355bb89e9141254c5a4c6566ffedf275255478872924df8d182097853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>ADAPTACION</topic><topic>ADAPTATION</topic><topic>ADN</topic><topic>Amino Acid Sequence</topic><topic>ANTIBIOTICOS</topic><topic>ANTIBIOTIQUE</topic><topic>ARN MENSAJERO</topic><topic>ARN MESSAGER</topic><topic>AZOTE</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Proteins - radiation effects</topic><topic>Bacterial Proteins - ultrastructure</topic><topic>Base Sequence</topic><topic>Cell growth</topic><topic>CELLULE</topic><topic>CELULAS</topic><topic>Chloroplasts</topic><topic>COMPOSICION QUIMICA</topic><topic>COMPOSITION CHIMIQUE</topic><topic>CRECIMIENTO</topic><topic>CROISSANCE</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanobacteria - metabolism</topic><topic>Cyanobacteria - ultrastructure</topic><topic>Darkness</topic><topic>EXPRESION GENICA</topic><topic>EXPRESSION DES GENES</topic><topic>FOTOPERIODISMO</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Regulation and Molecular Genetics</topic><topic>Genes</topic><topic>Introns</topic><topic>Light</topic><topic>Light-Harvesting Protein Complexes</topic><topic>LUMIERE</topic><topic>LUZ</topic><topic>Messenger RNA</topic><topic>Molecular Sequence Data</topic><topic>Nitrogen</topic><topic>NITROGENO</topic><topic>NOYAU CELLULAIRE</topic><topic>NUCLEO</topic><topic>OBSCURIDAD</topic><topic>OBSCURITE</topic><topic>PEPTIDE</topic><topic>Peptide Fragments - chemistry</topic><topic>PEPTIDOS</topic><topic>PHOTOPERIODICITE</topic><topic>Phycobilisomes</topic><topic>Phycocyanin - biosynthesis</topic><topic>Phycocyanin - chemistry</topic><topic>Phycoerythrin - biosynthesis</topic><topic>Phycoerythrin - chemistry</topic><topic>PIGMENT</topic><topic>PIGMENTOS</topic><topic>Plant Proteins - biosynthesis</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Proteins - radiation effects</topic><topic>Plant Proteins - ultrastructure</topic><topic>Plastids</topic><topic>Plastids - metabolism</topic><topic>Protein Biosynthesis</topic><topic>PROTEINAS</topic><topic>PROTEINE</topic><topic>RHODOPHYCEAE</topic><topic>RNA</topic><topic>RNA Precursors - biosynthesis</topic><topic>RNA, Messenger - biosynthesis</topic><topic>SECUENCIA NUCLEOTIDICA</topic><topic>Sequence Homology, Amino Acid</topic><topic>SEQUENCE NUCLEOTIDIQUE</topic><topic>Starvation</topic><topic>TECHNIQUE DE CULTURE</topic><topic>TECNICAS DE CULTIVO</topic><topic>THYLAKOIDE</topic><topic>TILACOIDES</topic><topic>TRANSCRIPCION</topic><topic>TRANSCRIPTION</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lichtle, C. (Ecole Normale Superieure, Paris, France.)</creatorcontrib><creatorcontrib>Garnier, F</creatorcontrib><creatorcontrib>Bernard, C</creatorcontrib><creatorcontrib>Zabulon, G</creatorcontrib><creatorcontrib>Spilar, A</creatorcontrib><creatorcontrib>Thomas, J.C</creatorcontrib><creatorcontrib>Etienne, A.L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lichtle, C. (Ecole Normale Superieure, Paris, France.)</au><au>Garnier, F</au><au>Bernard, C</au><au>Zabulon, G</au><au>Spilar, A</au><au>Thomas, J.C</au><au>Etienne, A.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential transcription of phycobiliprotein components in Rhodella violacea. Light and nitrogen effects on the 33-kilodalton phycoerythrin rod linker polypeptide, phycocyanin, and phycoerythrin transcripts</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>1996-11-01</date><risdate>1996</risdate><volume>112</volume><issue>3</issue><spage>1045</spage><epage>1054</epage><pages>1045-1054</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>In Rhodella violacea phycoerythrin (PE) has two transcripts, a premessenger and a mature messenger (the gene contains an intron). Phycocyanin, which is plastic-encoded, and the 33-kD PE rod linker polypeptide, which is nuclear-encoded, have only one transcript. The PE premessenger had a rapid turnover; mature transcripts were stable in the light and more stable in the dark. In the presence of rifampicin, cells that shifted from dark to light exhibited an active translation of preexisting transcripts. There are indications of a modulation of the nuclear genome expression by the chloroplast; it may involve an unstable, plastic-encoded translational activator. All transcripts disappeared rapidly during nitrogen starvation. If nitrogen addition was carried out in the dark, active transcription and translation resumed as in light conditions, but ceased after 2 d. Both nitrogen and light were required for a total recovery after nitrogen starvation. Compared with the transcripts of phycobilisome components studied so far in cyanobacteria and Rhodophyceae, the mature transcripts of R. violacea are very stable when nitrogen is not limiting. The unstable PE premessenger is a good indicator of active transcription. This organism is therefore an interesting model to study the regulation of gene expression and the interactions between chloroplastic and nuclear genomes</abstract><cop>United States</cop><pub>American Society of Plant Physiologists</pub><pmid>8938410</pmid><doi>10.1104/pp.112.3.1045</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 1996-11, Vol.112 (3), p.1045-1054 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_158031 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current) |
subjects | ADAPTACION ADAPTATION ADN Amino Acid Sequence ANTIBIOTICOS ANTIBIOTIQUE ARN MENSAJERO ARN MESSAGER AZOTE Bacterial Proteins - biosynthesis Bacterial Proteins - metabolism Bacterial Proteins - radiation effects Bacterial Proteins - ultrastructure Base Sequence Cell growth CELLULE CELULAS Chloroplasts COMPOSICION QUIMICA COMPOSITION CHIMIQUE CRECIMIENTO CROISSANCE Cyanobacteria Cyanobacteria - genetics Cyanobacteria - metabolism Cyanobacteria - ultrastructure Darkness EXPRESION GENICA EXPRESSION DES GENES FOTOPERIODISMO Gene Expression Regulation, Plant Gene Regulation and Molecular Genetics Genes Introns Light Light-Harvesting Protein Complexes LUMIERE LUZ Messenger RNA Molecular Sequence Data Nitrogen NITROGENO NOYAU CELLULAIRE NUCLEO OBSCURIDAD OBSCURITE PEPTIDE Peptide Fragments - chemistry PEPTIDOS PHOTOPERIODICITE Phycobilisomes Phycocyanin - biosynthesis Phycocyanin - chemistry Phycoerythrin - biosynthesis Phycoerythrin - chemistry PIGMENT PIGMENTOS Plant Proteins - biosynthesis Plant Proteins - metabolism Plant Proteins - radiation effects Plant Proteins - ultrastructure Plastids Plastids - metabolism Protein Biosynthesis PROTEINAS PROTEINE RHODOPHYCEAE RNA RNA Precursors - biosynthesis RNA, Messenger - biosynthesis SECUENCIA NUCLEOTIDICA Sequence Homology, Amino Acid SEQUENCE NUCLEOTIDIQUE Starvation TECHNIQUE DE CULTURE TECNICAS DE CULTIVO THYLAKOIDE TILACOIDES TRANSCRIPCION TRANSCRIPTION Transcription, Genetic |
title | Differential transcription of phycobiliprotein components in Rhodella violacea. Light and nitrogen effects on the 33-kilodalton phycoerythrin rod linker polypeptide, phycocyanin, and phycoerythrin transcripts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20transcription%20of%20phycobiliprotein%20components%20in%20Rhodella%20violacea.%20Light%20and%20nitrogen%20effects%20on%20the%2033-kilodalton%20phycoerythrin%20rod%20linker%20polypeptide,%20phycocyanin,%20and%20phycoerythrin%20transcripts&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Lichtle,%20C.%20(Ecole%20Normale%20Superieure,%20Paris,%20France.)&rft.date=1996-11-01&rft.volume=112&rft.issue=3&rft.spage=1045&rft.epage=1054&rft.pages=1045-1054&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.112.3.1045&rft_dat=%3Cjstor_pubme%3E4277415%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16401338&rft_id=info:pmid/8938410&rft_jstor_id=4277415&rfr_iscdi=true |