Transition from placental to air breathing stimulates haem‐oxygenase‐1 expression without functional consequence for pulmonary vascular adaptation in pigs and mice

1 In systemic vessels, haem‐oxygenase (HO) is induced during oxidative stress and known to modulate vasodilatation and vascular remodelling. At birth, with the transition from placental to air breathing, the pulmonary vessels are exposed to oxidative stress and undergo well‐documented remodelling pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of pharmacology 2005-02, Vol.144 (4), p.467-476
Hauptverfasser: Stanford, Salome J, Hislop, Alison A, Oltmanns, Ute, Nabel, Elizabeth G, Sang, Hong, Haworth, Shelia G, Mitchell, Jane A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 476
container_issue 4
container_start_page 467
container_title British journal of pharmacology
container_volume 144
creator Stanford, Salome J
Hislop, Alison A
Oltmanns, Ute
Nabel, Elizabeth G
Sang, Hong
Haworth, Shelia G
Mitchell, Jane A
description 1 In systemic vessels, haem‐oxygenase (HO) is induced during oxidative stress and known to modulate vasodilatation and vascular remodelling. At birth, with the transition from placental to air breathing, the pulmonary vessels are exposed to oxidative stress and undergo well‐documented remodelling processes. Thus, we investigated the role of HO in the lung during adaptation to extra‐uterine life using a pig and mouse model. In addition to the novel data presented with regard to one isoform, HO‐1, this study is among the first to describe the pulmonary vascular remodelling in the mouse after birth. 2 We show, for the first time, that another isoform, HO‐2, is present constitutively at birth and HO‐1 protein is induced in the porcine and murine lung after birth in vascular and airway structures, peaking at 14 days in the pig and at about 4 days in the mouse. Furthermore, we show that HO‐1 mRNA declines after birth in the mouse lung. 3 Inhibitors of HO did not modify vasodilator responses in vessels from 14‐day‐old pigs. 4 Moreover, lungs from HO‐1‐deficient mice developed normally after birth. 5 HO‐1 is induced at birth but plays no role in the development of vasodilator responses or remodelling that occurs at this time. These data suggest that HO‐1 expression at birth is a redundant response to oxidative stress in the lungs of healthy mammals. However, it remains possible that this pathway protects if complications occur during or after birth. British Journal of Pharmacology (2005) 144, 467–476. doi:10.1038/sj.bjp.0705988
doi_str_mv 10.1038/sj.bjp.0705988
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1576023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>971571641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4890-d785dade2f87f80c0ab86ffdfda25ee9720f2cd4a67d4b4a146d5075356ca173</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhUcIRENhyxJZSLCbYM-Mx84GqVSFIlWCRfbWjX8SRzP24DvTNjsegbfoe_EkOE1EgQ0rW7qfj889pyheMjpntJbvcDtfbYc5FZQvpHxUzFgj2pLXkj0uZpRSUTIm5UnxDHFLaR4K_rQ4YbzlnNd8VtwtEwT0o4-BuBR7MnSgbRihI2Mk4BNZJQvjxoc1wdH3UwejRbIB2__8_iPe7tY2ANp8Z8TeDski7qVu_LiJ00jcFPReO8vpGNB-m2zQlriYyDB1fR6kHbkG1Fk3ETAwjHDvxQcy-DUSCIb0XtvnxRMHHdoXx_O0WH68WJ5flldfPn0-P7sqdSMXtDRCcgPGVk4KJ6mmsJKtc8YZqLi1C1FRV2nTQCtMs2qANa3hVOQoWg1M1KfF-4PsMK16a_ZJJOjUkHyfnaoIXv09CX6j1vFaMS5aWtVZ4O1RIMW8LI6q96ht10GwcULViqapsskMvv4H3MYp5aBQVSzbZLWgGZofIJ0iYrLutxNG1b5_hVuV-1fH_vODV3_6f8CPhWfgzRHIoUPncvva4wPXcrlo7_eoD9yN7-zuP9-qD18vK9HQ-hcZVtJ2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217201370</pqid></control><display><type>article</type><title>Transition from placental to air breathing stimulates haem‐oxygenase‐1 expression without functional consequence for pulmonary vascular adaptation in pigs and mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Stanford, Salome J ; Hislop, Alison A ; Oltmanns, Ute ; Nabel, Elizabeth G ; Sang, Hong ; Haworth, Shelia G ; Mitchell, Jane A</creator><creatorcontrib>Stanford, Salome J ; Hislop, Alison A ; Oltmanns, Ute ; Nabel, Elizabeth G ; Sang, Hong ; Haworth, Shelia G ; Mitchell, Jane A</creatorcontrib><description>1 In systemic vessels, haem‐oxygenase (HO) is induced during oxidative stress and known to modulate vasodilatation and vascular remodelling. At birth, with the transition from placental to air breathing, the pulmonary vessels are exposed to oxidative stress and undergo well‐documented remodelling processes. Thus, we investigated the role of HO in the lung during adaptation to extra‐uterine life using a pig and mouse model. In addition to the novel data presented with regard to one isoform, HO‐1, this study is among the first to describe the pulmonary vascular remodelling in the mouse after birth. 2 We show, for the first time, that another isoform, HO‐2, is present constitutively at birth and HO‐1 protein is induced in the porcine and murine lung after birth in vascular and airway structures, peaking at 14 days in the pig and at about 4 days in the mouse. Furthermore, we show that HO‐1 mRNA declines after birth in the mouse lung. 3 Inhibitors of HO did not modify vasodilator responses in vessels from 14‐day‐old pigs. 4 Moreover, lungs from HO‐1‐deficient mice developed normally after birth. 5 HO‐1 is induced at birth but plays no role in the development of vasodilator responses or remodelling that occurs at this time. These data suggest that HO‐1 expression at birth is a redundant response to oxidative stress in the lungs of healthy mammals. However, it remains possible that this pathway protects if complications occur during or after birth. British Journal of Pharmacology (2005) 144, 467–476. doi:10.1038/sj.bjp.0705988</description><identifier>ISSN: 0007-1188</identifier><identifier>EISSN: 1476-5381</identifier><identifier>DOI: 10.1038/sj.bjp.0705988</identifier><identifier>PMID: 15655535</identifier><identifier>CODEN: BJPCBM</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adaptation, Physiological - physiology ; Animals ; Animals, Newborn ; Biological and medical sciences ; Blotting, Western ; cGMP ; development ; haem‐oxygenase ; Heme Oxygenase (Decyclizing) - biosynthesis ; Heme Oxygenase (Decyclizing) - genetics ; Heme Oxygenase-1 ; Lung - blood supply ; Lung - enzymology ; Lung - growth &amp; development ; Lung - physiology ; Medical sciences ; Membrane Proteins ; Mice ; Mice, Knockout ; Muscle Contraction - physiology ; Muscle, Smooth, Vascular - growth &amp; development ; Muscle, Smooth, Vascular - physiology ; Pharmacology. Drug treatments ; Pulmonary Artery - growth &amp; development ; Pulmonary Artery - physiology ; Respiratory Physiological Phenomena ; Reverse Transcriptase Polymerase Chain Reaction ; Swine ; Vascular remodelling ; vasodilation</subject><ispartof>British journal of pharmacology, 2005-02, Vol.144 (4), p.467-476</ispartof><rights>2005 British Pharmacological Society</rights><rights>2005 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Feb 2005</rights><rights>Copyright 2005, Nature Publishing Group 2005 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4890-d785dade2f87f80c0ab86ffdfda25ee9720f2cd4a67d4b4a146d5075356ca173</citedby><cites>FETCH-LOGICAL-c4890-d785dade2f87f80c0ab86ffdfda25ee9720f2cd4a67d4b4a146d5075356ca173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1576023/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1576023/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,1412,1428,27905,27906,45555,45556,46390,46814,53772,53774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16589623$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15655535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stanford, Salome J</creatorcontrib><creatorcontrib>Hislop, Alison A</creatorcontrib><creatorcontrib>Oltmanns, Ute</creatorcontrib><creatorcontrib>Nabel, Elizabeth G</creatorcontrib><creatorcontrib>Sang, Hong</creatorcontrib><creatorcontrib>Haworth, Shelia G</creatorcontrib><creatorcontrib>Mitchell, Jane A</creatorcontrib><title>Transition from placental to air breathing stimulates haem‐oxygenase‐1 expression without functional consequence for pulmonary vascular adaptation in pigs and mice</title><title>British journal of pharmacology</title><addtitle>Br J Pharmacol</addtitle><description>1 In systemic vessels, haem‐oxygenase (HO) is induced during oxidative stress and known to modulate vasodilatation and vascular remodelling. At birth, with the transition from placental to air breathing, the pulmonary vessels are exposed to oxidative stress and undergo well‐documented remodelling processes. Thus, we investigated the role of HO in the lung during adaptation to extra‐uterine life using a pig and mouse model. In addition to the novel data presented with regard to one isoform, HO‐1, this study is among the first to describe the pulmonary vascular remodelling in the mouse after birth. 2 We show, for the first time, that another isoform, HO‐2, is present constitutively at birth and HO‐1 protein is induced in the porcine and murine lung after birth in vascular and airway structures, peaking at 14 days in the pig and at about 4 days in the mouse. Furthermore, we show that HO‐1 mRNA declines after birth in the mouse lung. 3 Inhibitors of HO did not modify vasodilator responses in vessels from 14‐day‐old pigs. 4 Moreover, lungs from HO‐1‐deficient mice developed normally after birth. 5 HO‐1 is induced at birth but plays no role in the development of vasodilator responses or remodelling that occurs at this time. These data suggest that HO‐1 expression at birth is a redundant response to oxidative stress in the lungs of healthy mammals. However, it remains possible that this pathway protects if complications occur during or after birth. British Journal of Pharmacology (2005) 144, 467–476. doi:10.1038/sj.bjp.0705988</description><subject>Adaptation, Physiological - physiology</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>cGMP</subject><subject>development</subject><subject>haem‐oxygenase</subject><subject>Heme Oxygenase (Decyclizing) - biosynthesis</subject><subject>Heme Oxygenase (Decyclizing) - genetics</subject><subject>Heme Oxygenase-1</subject><subject>Lung - blood supply</subject><subject>Lung - enzymology</subject><subject>Lung - growth &amp; development</subject><subject>Lung - physiology</subject><subject>Medical sciences</subject><subject>Membrane Proteins</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle, Smooth, Vascular - growth &amp; development</subject><subject>Muscle, Smooth, Vascular - physiology</subject><subject>Pharmacology. Drug treatments</subject><subject>Pulmonary Artery - growth &amp; development</subject><subject>Pulmonary Artery - physiology</subject><subject>Respiratory Physiological Phenomena</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Swine</subject><subject>Vascular remodelling</subject><subject>vasodilation</subject><issn>0007-1188</issn><issn>1476-5381</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1uEzEUhUcIRENhyxJZSLCbYM-Mx84GqVSFIlWCRfbWjX8SRzP24DvTNjsegbfoe_EkOE1EgQ0rW7qfj889pyheMjpntJbvcDtfbYc5FZQvpHxUzFgj2pLXkj0uZpRSUTIm5UnxDHFLaR4K_rQ4YbzlnNd8VtwtEwT0o4-BuBR7MnSgbRihI2Mk4BNZJQvjxoc1wdH3UwejRbIB2__8_iPe7tY2ANp8Z8TeDski7qVu_LiJ00jcFPReO8vpGNB-m2zQlriYyDB1fR6kHbkG1Fk3ETAwjHDvxQcy-DUSCIb0XtvnxRMHHdoXx_O0WH68WJ5flldfPn0-P7sqdSMXtDRCcgPGVk4KJ6mmsJKtc8YZqLi1C1FRV2nTQCtMs2qANa3hVOQoWg1M1KfF-4PsMK16a_ZJJOjUkHyfnaoIXv09CX6j1vFaMS5aWtVZ4O1RIMW8LI6q96ht10GwcULViqapsskMvv4H3MYp5aBQVSzbZLWgGZofIJ0iYrLutxNG1b5_hVuV-1fH_vODV3_6f8CPhWfgzRHIoUPncvva4wPXcrlo7_eoD9yN7-zuP9-qD18vK9HQ-hcZVtJ2</recordid><startdate>200502</startdate><enddate>200502</enddate><creator>Stanford, Salome J</creator><creator>Hislop, Alison A</creator><creator>Oltmanns, Ute</creator><creator>Nabel, Elizabeth G</creator><creator>Sang, Hong</creator><creator>Haworth, Shelia G</creator><creator>Mitchell, Jane A</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200502</creationdate><title>Transition from placental to air breathing stimulates haem‐oxygenase‐1 expression without functional consequence for pulmonary vascular adaptation in pigs and mice</title><author>Stanford, Salome J ; Hislop, Alison A ; Oltmanns, Ute ; Nabel, Elizabeth G ; Sang, Hong ; Haworth, Shelia G ; Mitchell, Jane A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4890-d785dade2f87f80c0ab86ffdfda25ee9720f2cd4a67d4b4a146d5075356ca173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adaptation, Physiological - physiology</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>cGMP</topic><topic>development</topic><topic>haem‐oxygenase</topic><topic>Heme Oxygenase (Decyclizing) - biosynthesis</topic><topic>Heme Oxygenase (Decyclizing) - genetics</topic><topic>Heme Oxygenase-1</topic><topic>Lung - blood supply</topic><topic>Lung - enzymology</topic><topic>Lung - growth &amp; development</topic><topic>Lung - physiology</topic><topic>Medical sciences</topic><topic>Membrane Proteins</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle, Smooth, Vascular - growth &amp; development</topic><topic>Muscle, Smooth, Vascular - physiology</topic><topic>Pharmacology. Drug treatments</topic><topic>Pulmonary Artery - growth &amp; development</topic><topic>Pulmonary Artery - physiology</topic><topic>Respiratory Physiological Phenomena</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Swine</topic><topic>Vascular remodelling</topic><topic>vasodilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stanford, Salome J</creatorcontrib><creatorcontrib>Hislop, Alison A</creatorcontrib><creatorcontrib>Oltmanns, Ute</creatorcontrib><creatorcontrib>Nabel, Elizabeth G</creatorcontrib><creatorcontrib>Sang, Hong</creatorcontrib><creatorcontrib>Haworth, Shelia G</creatorcontrib><creatorcontrib>Mitchell, Jane A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stanford, Salome J</au><au>Hislop, Alison A</au><au>Oltmanns, Ute</au><au>Nabel, Elizabeth G</au><au>Sang, Hong</au><au>Haworth, Shelia G</au><au>Mitchell, Jane A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition from placental to air breathing stimulates haem‐oxygenase‐1 expression without functional consequence for pulmonary vascular adaptation in pigs and mice</atitle><jtitle>British journal of pharmacology</jtitle><addtitle>Br J Pharmacol</addtitle><date>2005-02</date><risdate>2005</risdate><volume>144</volume><issue>4</issue><spage>467</spage><epage>476</epage><pages>467-476</pages><issn>0007-1188</issn><eissn>1476-5381</eissn><coden>BJPCBM</coden><abstract>1 In systemic vessels, haem‐oxygenase (HO) is induced during oxidative stress and known to modulate vasodilatation and vascular remodelling. At birth, with the transition from placental to air breathing, the pulmonary vessels are exposed to oxidative stress and undergo well‐documented remodelling processes. Thus, we investigated the role of HO in the lung during adaptation to extra‐uterine life using a pig and mouse model. In addition to the novel data presented with regard to one isoform, HO‐1, this study is among the first to describe the pulmonary vascular remodelling in the mouse after birth. 2 We show, for the first time, that another isoform, HO‐2, is present constitutively at birth and HO‐1 protein is induced in the porcine and murine lung after birth in vascular and airway structures, peaking at 14 days in the pig and at about 4 days in the mouse. Furthermore, we show that HO‐1 mRNA declines after birth in the mouse lung. 3 Inhibitors of HO did not modify vasodilator responses in vessels from 14‐day‐old pigs. 4 Moreover, lungs from HO‐1‐deficient mice developed normally after birth. 5 HO‐1 is induced at birth but plays no role in the development of vasodilator responses or remodelling that occurs at this time. These data suggest that HO‐1 expression at birth is a redundant response to oxidative stress in the lungs of healthy mammals. However, it remains possible that this pathway protects if complications occur during or after birth. British Journal of Pharmacology (2005) 144, 467–476. doi:10.1038/sj.bjp.0705988</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>15655535</pmid><doi>10.1038/sj.bjp.0705988</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1188
ispartof British journal of pharmacology, 2005-02, Vol.144 (4), p.467-476
issn 0007-1188
1476-5381
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1576023
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; PubMed Central; Alma/SFX Local Collection
subjects Adaptation, Physiological - physiology
Animals
Animals, Newborn
Biological and medical sciences
Blotting, Western
cGMP
development
haem‐oxygenase
Heme Oxygenase (Decyclizing) - biosynthesis
Heme Oxygenase (Decyclizing) - genetics
Heme Oxygenase-1
Lung - blood supply
Lung - enzymology
Lung - growth & development
Lung - physiology
Medical sciences
Membrane Proteins
Mice
Mice, Knockout
Muscle Contraction - physiology
Muscle, Smooth, Vascular - growth & development
Muscle, Smooth, Vascular - physiology
Pharmacology. Drug treatments
Pulmonary Artery - growth & development
Pulmonary Artery - physiology
Respiratory Physiological Phenomena
Reverse Transcriptase Polymerase Chain Reaction
Swine
Vascular remodelling
vasodilation
title Transition from placental to air breathing stimulates haem‐oxygenase‐1 expression without functional consequence for pulmonary vascular adaptation in pigs and mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20from%20placental%20to%20air%20breathing%20stimulates%20haem%E2%80%90oxygenase%E2%80%901%20expression%20without%20functional%20consequence%20for%20pulmonary%20vascular%20adaptation%20in%20pigs%20and%20mice&rft.jtitle=British%20journal%20of%20pharmacology&rft.au=Stanford,%20Salome%20J&rft.date=2005-02&rft.volume=144&rft.issue=4&rft.spage=467&rft.epage=476&rft.pages=467-476&rft.issn=0007-1188&rft.eissn=1476-5381&rft.coden=BJPCBM&rft_id=info:doi/10.1038/sj.bjp.0705988&rft_dat=%3Cproquest_pubme%3E971571641%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217201370&rft_id=info:pmid/15655535&rfr_iscdi=true