Connexin‐mimetic peptides dissociate electrotonic EDHF‐type signalling via myoendothelial and smooth muscle gap junctions in the rabbit iliac artery
1 Synthetic peptides corresponding to the Gap 26 and Gap 27 domains of the first and second extracellular loops of the major vascular connexins (Cx37, Cx40 and Cx43), designated as 43Gap 26, 40Gap 27, 37,40Gap 26 and 37,43Gap 27 according to Cx homology, were used to investigate the role of gap junc...
Gespeichert in:
Veröffentlicht in: | British journal of pharmacology 2005-01, Vol.144 (1), p.108-114 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | 1 |
container_start_page | 108 |
container_title | British journal of pharmacology |
container_volume | 144 |
creator | Chaytor, Andrew T Bakker, Linda M Edwards, David H Griffith, Tudor M |
description | 1
Synthetic peptides corresponding to the Gap 26 and Gap 27 domains of the first and second extracellular loops of the major vascular connexins (Cx37, Cx40 and Cx43), designated as 43Gap 26, 40Gap 27, 37,40Gap 26 and 37,43Gap 27 according to Cx homology, were used to investigate the role of gap junctions in the spread of endothelial hyperpolarizations evoked by cyclopiazonic acid (CPA) through the wall of the rabbit iliac artery.
2
Immunostaining and confocal microscopy demonstrated that gap junction plaques constructed from Cx37 and Cx40 were abundant in the endothelium, whereas Cx43 was the dominant Cx visualized in the media.
3
None of the Cx‐mimetic peptides affected endothelial hyperpolarizations evoked by CPA directly.
4
When administered individually, 40Gap 27, 37,40Gap 26 and 37,43Gap 27, but not 43Gap 26, attenuated endothelium‐dependent subintimal smooth muscle hyperpolarization. By contrast, only 43Gap 26 and 37,43Gap 27 reduced the spread of subintimal hyperpolarization through the media of the rabbit iliac artery. The site of action of the peptides therefore correlated closely with the expression of their target Cxs in detectable gap junction plaques.
5
The findings provide further evidence that the EDHF phenomenon is electrotonic in nature, and highlight the contribution of myoendothelial and homocellular smooth muscle communication via gap junctions to arterial function.
British Journal of Pharmacology (2005) 144, 108–114. doi:10.1038/sj.bjp.0706046 |
doi_str_mv | 10.1038/sj.bjp.0706046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1575982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67360451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4897-7b1bac35aa823176e463a9a227257b3e92fa466e84f01ef45204545e45c7347e3</originalsourceid><addsrcrecordid>eNqF0T2P0zAYB3ALgbhSWBmRhQRbi534JVmQjnJHkU6CAWbLcZ_0HDl2sJ2DbnwERj4fnwSjVhywMFmWf8-L_EfoMSVrSurmRRrW3TCtiSSCMHEHLSiTYsXrht5FC0KIXFHaNGfoQUoDIeVR8vvojHLBWCPZAn3fBO_hi_U_vn4b7QjZGjzBlO0OEt7ZlIKxOgMGBybHkIMv4OL19rL4fJgAJ7v32jnr9_jGajweAvhdyNfgrHZY-x1OYyh3PM7JOMB7PeFh9ibb4BO2HheKo-46m7EtNQbrmCEeHqJ7vXYJHp3OJfp4efFhs11dvXvzdnN-tTKsaeVKdrTTpuZaN1VNpQAmat3qqpIVl10NbdVrJgQ0rCcUesYrwjjjwLiRNZNQL9HLY99p7kbYGfA5aqemaEcdDypoq_5-8fZa7cONolzytgxdouenBjF8miFlNdpkwDntIcxJCVmXaDgt8Ok_cAhzLJ-XVEUlbUtwTUHrIzIxpBSh_70JJepX4ioNqiSuTomXgid_7n_LTxEX8OwEdDLa9VF7Y9OtE6whVPDi6qP7bB0c_jNWvXq_rUQr659ul8qt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217194768</pqid></control><display><type>article</type><title>Connexin‐mimetic peptides dissociate electrotonic EDHF‐type signalling via myoendothelial and smooth muscle gap junctions in the rabbit iliac artery</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chaytor, Andrew T ; Bakker, Linda M ; Edwards, David H ; Griffith, Tudor M</creator><creatorcontrib>Chaytor, Andrew T ; Bakker, Linda M ; Edwards, David H ; Griffith, Tudor M</creatorcontrib><description>1
Synthetic peptides corresponding to the Gap 26 and Gap 27 domains of the first and second extracellular loops of the major vascular connexins (Cx37, Cx40 and Cx43), designated as 43Gap 26, 40Gap 27, 37,40Gap 26 and 37,43Gap 27 according to Cx homology, were used to investigate the role of gap junctions in the spread of endothelial hyperpolarizations evoked by cyclopiazonic acid (CPA) through the wall of the rabbit iliac artery.
2
Immunostaining and confocal microscopy demonstrated that gap junction plaques constructed from Cx37 and Cx40 were abundant in the endothelium, whereas Cx43 was the dominant Cx visualized in the media.
3
None of the Cx‐mimetic peptides affected endothelial hyperpolarizations evoked by CPA directly.
4
When administered individually, 40Gap 27, 37,40Gap 26 and 37,43Gap 27, but not 43Gap 26, attenuated endothelium‐dependent subintimal smooth muscle hyperpolarization. By contrast, only 43Gap 26 and 37,43Gap 27 reduced the spread of subintimal hyperpolarization through the media of the rabbit iliac artery. The site of action of the peptides therefore correlated closely with the expression of their target Cxs in detectable gap junction plaques.
5
The findings provide further evidence that the EDHF phenomenon is electrotonic in nature, and highlight the contribution of myoendothelial and homocellular smooth muscle communication via gap junctions to arterial function.
British Journal of Pharmacology (2005) 144, 108–114. doi:10.1038/sj.bjp.0706046</description><identifier>ISSN: 0007-1188</identifier><identifier>EISSN: 1476-5381</identifier><identifier>DOI: 10.1038/sj.bjp.0706046</identifier><identifier>PMID: 15644874</identifier><identifier>CODEN: BJPCBM</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Biological and medical sciences ; Biological Factors - metabolism ; connexin ; Connexins - physiology ; EDHF ; Electrophysiology ; Gap junctions ; Gap Junctions - physiology ; hyperpolarization ; Iliac Artery - metabolism ; Immunohistochemistry ; Indoles - pharmacology ; Male ; Medical sciences ; Microelectrodes ; Microscopy, Confocal ; Muscle, Smooth, Vascular - cytology ; Muscle, Smooth, Vascular - metabolism ; Muscle, Smooth, Vascular - physiology ; Patch-Clamp Techniques ; Peptides - chemistry ; Pharmacology. Drug treatments ; Rabbits</subject><ispartof>British journal of pharmacology, 2005-01, Vol.144 (1), p.108-114</ispartof><rights>2005 British Pharmacological Society</rights><rights>2005 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Jan 2005</rights><rights>Copyright 2005, Nature Publishing Group 2005 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4897-7b1bac35aa823176e463a9a227257b3e92fa466e84f01ef45204545e45c7347e3</citedby><cites>FETCH-LOGICAL-c4897-7b1bac35aa823176e463a9a227257b3e92fa466e84f01ef45204545e45c7347e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1575982/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1575982/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,1418,1434,27929,27930,45579,45580,46414,46838,53796,53798</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16480165$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15644874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaytor, Andrew T</creatorcontrib><creatorcontrib>Bakker, Linda M</creatorcontrib><creatorcontrib>Edwards, David H</creatorcontrib><creatorcontrib>Griffith, Tudor M</creatorcontrib><title>Connexin‐mimetic peptides dissociate electrotonic EDHF‐type signalling via myoendothelial and smooth muscle gap junctions in the rabbit iliac artery</title><title>British journal of pharmacology</title><addtitle>Br J Pharmacol</addtitle><description>1
Synthetic peptides corresponding to the Gap 26 and Gap 27 domains of the first and second extracellular loops of the major vascular connexins (Cx37, Cx40 and Cx43), designated as 43Gap 26, 40Gap 27, 37,40Gap 26 and 37,43Gap 27 according to Cx homology, were used to investigate the role of gap junctions in the spread of endothelial hyperpolarizations evoked by cyclopiazonic acid (CPA) through the wall of the rabbit iliac artery.
2
Immunostaining and confocal microscopy demonstrated that gap junction plaques constructed from Cx37 and Cx40 were abundant in the endothelium, whereas Cx43 was the dominant Cx visualized in the media.
3
None of the Cx‐mimetic peptides affected endothelial hyperpolarizations evoked by CPA directly.
4
When administered individually, 40Gap 27, 37,40Gap 26 and 37,43Gap 27, but not 43Gap 26, attenuated endothelium‐dependent subintimal smooth muscle hyperpolarization. By contrast, only 43Gap 26 and 37,43Gap 27 reduced the spread of subintimal hyperpolarization through the media of the rabbit iliac artery. The site of action of the peptides therefore correlated closely with the expression of their target Cxs in detectable gap junction plaques.
5
The findings provide further evidence that the EDHF phenomenon is electrotonic in nature, and highlight the contribution of myoendothelial and homocellular smooth muscle communication via gap junctions to arterial function.
British Journal of Pharmacology (2005) 144, 108–114. doi:10.1038/sj.bjp.0706046</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Factors - metabolism</subject><subject>connexin</subject><subject>Connexins - physiology</subject><subject>EDHF</subject><subject>Electrophysiology</subject><subject>Gap junctions</subject><subject>Gap Junctions - physiology</subject><subject>hyperpolarization</subject><subject>Iliac Artery - metabolism</subject><subject>Immunohistochemistry</subject><subject>Indoles - pharmacology</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Microelectrodes</subject><subject>Microscopy, Confocal</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Muscle, Smooth, Vascular - physiology</subject><subject>Patch-Clamp Techniques</subject><subject>Peptides - chemistry</subject><subject>Pharmacology. Drug treatments</subject><subject>Rabbits</subject><issn>0007-1188</issn><issn>1476-5381</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0T2P0zAYB3ALgbhSWBmRhQRbi534JVmQjnJHkU6CAWbLcZ_0HDl2sJ2DbnwERj4fnwSjVhywMFmWf8-L_EfoMSVrSurmRRrW3TCtiSSCMHEHLSiTYsXrht5FC0KIXFHaNGfoQUoDIeVR8vvojHLBWCPZAn3fBO_hi_U_vn4b7QjZGjzBlO0OEt7ZlIKxOgMGBybHkIMv4OL19rL4fJgAJ7v32jnr9_jGajweAvhdyNfgrHZY-x1OYyh3PM7JOMB7PeFh9ibb4BO2HheKo-46m7EtNQbrmCEeHqJ7vXYJHp3OJfp4efFhs11dvXvzdnN-tTKsaeVKdrTTpuZaN1VNpQAmat3qqpIVl10NbdVrJgQ0rCcUesYrwjjjwLiRNZNQL9HLY99p7kbYGfA5aqemaEcdDypoq_5-8fZa7cONolzytgxdouenBjF8miFlNdpkwDntIcxJCVmXaDgt8Ok_cAhzLJ-XVEUlbUtwTUHrIzIxpBSh_70JJepX4ioNqiSuTomXgid_7n_LTxEX8OwEdDLa9VF7Y9OtE6whVPDi6qP7bB0c_jNWvXq_rUQr659ul8qt</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Chaytor, Andrew T</creator><creator>Bakker, Linda M</creator><creator>Edwards, David H</creator><creator>Griffith, Tudor M</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200501</creationdate><title>Connexin‐mimetic peptides dissociate electrotonic EDHF‐type signalling via myoendothelial and smooth muscle gap junctions in the rabbit iliac artery</title><author>Chaytor, Andrew T ; Bakker, Linda M ; Edwards, David H ; Griffith, Tudor M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4897-7b1bac35aa823176e463a9a227257b3e92fa466e84f01ef45204545e45c7347e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Factors - metabolism</topic><topic>connexin</topic><topic>Connexins - physiology</topic><topic>EDHF</topic><topic>Electrophysiology</topic><topic>Gap junctions</topic><topic>Gap Junctions - physiology</topic><topic>hyperpolarization</topic><topic>Iliac Artery - metabolism</topic><topic>Immunohistochemistry</topic><topic>Indoles - pharmacology</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Microelectrodes</topic><topic>Microscopy, Confocal</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Muscle, Smooth, Vascular - physiology</topic><topic>Patch-Clamp Techniques</topic><topic>Peptides - chemistry</topic><topic>Pharmacology. Drug treatments</topic><topic>Rabbits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaytor, Andrew T</creatorcontrib><creatorcontrib>Bakker, Linda M</creatorcontrib><creatorcontrib>Edwards, David H</creatorcontrib><creatorcontrib>Griffith, Tudor M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaytor, Andrew T</au><au>Bakker, Linda M</au><au>Edwards, David H</au><au>Griffith, Tudor M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connexin‐mimetic peptides dissociate electrotonic EDHF‐type signalling via myoendothelial and smooth muscle gap junctions in the rabbit iliac artery</atitle><jtitle>British journal of pharmacology</jtitle><addtitle>Br J Pharmacol</addtitle><date>2005-01</date><risdate>2005</risdate><volume>144</volume><issue>1</issue><spage>108</spage><epage>114</epage><pages>108-114</pages><issn>0007-1188</issn><eissn>1476-5381</eissn><coden>BJPCBM</coden><abstract>1
Synthetic peptides corresponding to the Gap 26 and Gap 27 domains of the first and second extracellular loops of the major vascular connexins (Cx37, Cx40 and Cx43), designated as 43Gap 26, 40Gap 27, 37,40Gap 26 and 37,43Gap 27 according to Cx homology, were used to investigate the role of gap junctions in the spread of endothelial hyperpolarizations evoked by cyclopiazonic acid (CPA) through the wall of the rabbit iliac artery.
2
Immunostaining and confocal microscopy demonstrated that gap junction plaques constructed from Cx37 and Cx40 were abundant in the endothelium, whereas Cx43 was the dominant Cx visualized in the media.
3
None of the Cx‐mimetic peptides affected endothelial hyperpolarizations evoked by CPA directly.
4
When administered individually, 40Gap 27, 37,40Gap 26 and 37,43Gap 27, but not 43Gap 26, attenuated endothelium‐dependent subintimal smooth muscle hyperpolarization. By contrast, only 43Gap 26 and 37,43Gap 27 reduced the spread of subintimal hyperpolarization through the media of the rabbit iliac artery. The site of action of the peptides therefore correlated closely with the expression of their target Cxs in detectable gap junction plaques.
5
The findings provide further evidence that the EDHF phenomenon is electrotonic in nature, and highlight the contribution of myoendothelial and homocellular smooth muscle communication via gap junctions to arterial function.
British Journal of Pharmacology (2005) 144, 108–114. doi:10.1038/sj.bjp.0706046</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>15644874</pmid><doi>10.1038/sj.bjp.0706046</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1188 |
ispartof | British journal of pharmacology, 2005-01, Vol.144 (1), p.108-114 |
issn | 0007-1188 1476-5381 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1575982 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection |
subjects | Animals Biological and medical sciences Biological Factors - metabolism connexin Connexins - physiology EDHF Electrophysiology Gap junctions Gap Junctions - physiology hyperpolarization Iliac Artery - metabolism Immunohistochemistry Indoles - pharmacology Male Medical sciences Microelectrodes Microscopy, Confocal Muscle, Smooth, Vascular - cytology Muscle, Smooth, Vascular - metabolism Muscle, Smooth, Vascular - physiology Patch-Clamp Techniques Peptides - chemistry Pharmacology. Drug treatments Rabbits |
title | Connexin‐mimetic peptides dissociate electrotonic EDHF‐type signalling via myoendothelial and smooth muscle gap junctions in the rabbit iliac artery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T15%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connexin%E2%80%90mimetic%20peptides%20dissociate%20electrotonic%20EDHF%E2%80%90type%20signalling%20via%20myoendothelial%20and%20smooth%20muscle%20gap%20junctions%20in%20the%20rabbit%20iliac%20artery&rft.jtitle=British%20journal%20of%20pharmacology&rft.au=Chaytor,%20Andrew%20T&rft.date=2005-01&rft.volume=144&rft.issue=1&rft.spage=108&rft.epage=114&rft.pages=108-114&rft.issn=0007-1188&rft.eissn=1476-5381&rft.coden=BJPCBM&rft_id=info:doi/10.1038/sj.bjp.0706046&rft_dat=%3Cproquest_pubme%3E67360451%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217194768&rft_id=info:pmid/15644874&rfr_iscdi=true |