A cDNA encoding starch branching enzyme I from maize endosperm

ADP-Glc pyrophosphorylase (EC 2.7.7.27), starch synthases (EC 2.4.1.21), and SBEs (EC 2.4.1.18) are the key enzymes in the pathway of plant starch biosynthesis. Starch is a polymer of Glc that exists as two fractions, amylose and amylopectin, in maize (Zea mays L.) kernel amyloplasts. The essentiall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1995-07, Vol.108 (3), p.1313-1314
Hauptverfasser: Fisher, D.K. (The Pennsylvania State University, University Park, PA.), Kim, K.N, Gao, M, Boyer, C.D, Guiltinan, M.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1314
container_issue 3
container_start_page 1313
container_title Plant physiology (Bethesda)
container_volume 108
creator Fisher, D.K. (The Pennsylvania State University, University Park, PA.)
Kim, K.N
Gao, M
Boyer, C.D
Guiltinan, M.J
description ADP-Glc pyrophosphorylase (EC 2.7.7.27), starch synthases (EC 2.4.1.21), and SBEs (EC 2.4.1.18) are the key enzymes in the pathway of plant starch biosynthesis. Starch is a polymer of Glc that exists as two fractions, amylose and amylopectin, in maize (Zea mays L.) kernel amyloplasts. The essentially linear polymer amylose contains alpha -1,4-linked Glc, whereas the branched polymer amylopectin contains 5% alpha -1,6-linked Glc in addition to linear regions of alpha -1,4-linked Glc. Amylopectin synthesis requires the action of SBE, which catalyzes the formation of alpha -1,6-linkages. The branching process involves two steps with the hydrolysis of an internal 1,4-bond and the formation of a 1,6-bond using the linear chain (six to seven Glc units). Thus, branching enzymes are thought to interact with starch synthases in formation of amylopectin. Three SBE isozymes differing in enzymatic, chromatographic, and immunological properties have been resolved in maize endosperm, SBE I, SBE IIa, and SBE IIb. Recently, analysis of SBE I, SBE IIa, and SBE IIb revealed that SBE I may preferentially branch long chains of alpha -glucan, whereas SBE IIa and SBE IIb may play a different role in branching short chains during starch biosynthesis. We previously reported the cloning of a cDNA encoding SBE II from maize endosperm. Using antibodies to purified SBE I protein from maize endosperm, Baba et al. (1991) isolated a partial-length cDNA encoding the SBE I isoform. This cDNA lacks the entire open reading frame, because no ATG codon was found 5' of the known plastid signal peptide cleavage site. Based on similarity to the rice SBE I-like cDNA (rbe1), it was hypothesized that the SBE I cDNA lacked only two bases of the coding region.
doi_str_mv 10.1104/pp.108.3.1313
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_157496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4276703</jstor_id><sourcerecordid>4276703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-7f635df6d8589e63593f2f891d7f742c0801d3e54782c85fc6f2dac0b4ee1aa23</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMoOj6WbkShC3HXMe-kC4XBN4gu1HXIpMlMpW1q0hH015syw6ArVznc893LzT0AHCI4RgjS864bIyjHZIwIIhtghBjBOWZUboIRhElDKYsdsBvjO4QwQXQbbAtOYMH4CFxOMnP9NMlsa3xZtbMs9jqYeTYNujXzoWDb76_GZg-ZC77JGl1921QrfexsaPbBltN1tAerdw-83d68Xt3nj893D1eTx9xQifpcOE5Y6XgpmSxs0gVx2MkClcIJig2UEJXEMiokNpI5wx0utYFTai3SGpM9cLGc2y2mjS2Nbfuga9WFqtHhS3ldqb9OW83VzH8qxAQteOo_W_UH_7GwsVdNFY2ta91av4hKCEpQOs-_IGKSM8xlAvMlaIKPMVi3XgZBNQSjui5JqYgagkn8ye8frOlVEsk_Xfk6Gl274f5VXGOEE87JMOZ4ib3H3oe1TbHgAg720dJ22is9C2nC20shEBVMkh9Np6cR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15865268</pqid></control><display><type>article</type><title>A cDNA encoding starch branching enzyme I from maize endosperm</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Fisher, D.K. (The Pennsylvania State University, University Park, PA.) ; Kim, K.N ; Gao, M ; Boyer, C.D ; Guiltinan, M.J</creator><creatorcontrib>Fisher, D.K. (The Pennsylvania State University, University Park, PA.) ; Kim, K.N ; Gao, M ; Boyer, C.D ; Guiltinan, M.J</creatorcontrib><description>ADP-Glc pyrophosphorylase (EC 2.7.7.27), starch synthases (EC 2.4.1.21), and SBEs (EC 2.4.1.18) are the key enzymes in the pathway of plant starch biosynthesis. Starch is a polymer of Glc that exists as two fractions, amylose and amylopectin, in maize (Zea mays L.) kernel amyloplasts. The essentially linear polymer amylose contains alpha -1,4-linked Glc, whereas the branched polymer amylopectin contains 5% alpha -1,6-linked Glc in addition to linear regions of alpha -1,4-linked Glc. Amylopectin synthesis requires the action of SBE, which catalyzes the formation of alpha -1,6-linkages. The branching process involves two steps with the hydrolysis of an internal 1,4-bond and the formation of a 1,6-bond using the linear chain (six to seven Glc units). Thus, branching enzymes are thought to interact with starch synthases in formation of amylopectin. Three SBE isozymes differing in enzymatic, chromatographic, and immunological properties have been resolved in maize endosperm, SBE I, SBE IIa, and SBE IIb. Recently, analysis of SBE I, SBE IIa, and SBE IIb revealed that SBE I may preferentially branch long chains of alpha -glucan, whereas SBE IIa and SBE IIb may play a different role in branching short chains during starch biosynthesis. We previously reported the cloning of a cDNA encoding SBE II from maize endosperm. Using antibodies to purified SBE I protein from maize endosperm, Baba et al. (1991) isolated a partial-length cDNA encoding the SBE I isoform. This cDNA lacks the entire open reading frame, because no ATG codon was found 5' of the known plastid signal peptide cleavage site. Based on similarity to the rice SBE I-like cDNA (rbe1), it was hypothesized that the SBE I cDNA lacked only two bases of the coding region.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.108.3.1313</identifier><identifier>PMID: 7630956</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>1,4-alpha-Glucan Branching Enzyme - genetics ; ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; ADN ; ALMIDON ; AMIDON ; Amino acids ; Base Sequence ; Biological and medical sciences ; BIOSINTESIS ; BIOSYNTHESE ; BIOSYNTHESIS ; Branching ; CODE GENETIQUE ; CODIGO GENETICO ; COMPLEMENTARY DNA ; Corn ; DNA ; DNA, Complementary ; Endosperm ; ENREGISTREMENT ; Enzymes ; ENZYMIC ACTIVITY ; Five prime untranslated regions ; Fundamental and applied biological sciences. Psychology ; genbank/u17897 ; GENE ; GENES ; Genes. Genome ; GENETIC CODE ; GENETIC REGULATION ; GENETICA ; GENETICS ; GENETIQUE ; glucanotransferase ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; molecular sequences ; NUCLEOTIDE SEQUENCE ; Open reading frames ; Plant Gene Register ; REGISTRATION ; REGISTRO ; SECUENCIA NUCLEOTIDICA ; SEQUENCE NUCLEOTIDIQUE ; STARCH ; Starches ; Three prime untranslated regions ; TRANSFERASAS ; TRANSFERASE ; TRANSFERASES ; ZEA MAYS ; Zea mays - enzymology ; Zea mays - genetics</subject><ispartof>Plant physiology (Bethesda), 1995-07, Vol.108 (3), p.1313-1314</ispartof><rights>Copyright 1995 American Society of Plant Physiologists</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-7f635df6d8589e63593f2f891d7f742c0801d3e54782c85fc6f2dac0b4ee1aa23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4276703$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4276703$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3636633$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7630956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fisher, D.K. (The Pennsylvania State University, University Park, PA.)</creatorcontrib><creatorcontrib>Kim, K.N</creatorcontrib><creatorcontrib>Gao, M</creatorcontrib><creatorcontrib>Boyer, C.D</creatorcontrib><creatorcontrib>Guiltinan, M.J</creatorcontrib><title>A cDNA encoding starch branching enzyme I from maize endosperm</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>ADP-Glc pyrophosphorylase (EC 2.7.7.27), starch synthases (EC 2.4.1.21), and SBEs (EC 2.4.1.18) are the key enzymes in the pathway of plant starch biosynthesis. Starch is a polymer of Glc that exists as two fractions, amylose and amylopectin, in maize (Zea mays L.) kernel amyloplasts. The essentially linear polymer amylose contains alpha -1,4-linked Glc, whereas the branched polymer amylopectin contains 5% alpha -1,6-linked Glc in addition to linear regions of alpha -1,4-linked Glc. Amylopectin synthesis requires the action of SBE, which catalyzes the formation of alpha -1,6-linkages. The branching process involves two steps with the hydrolysis of an internal 1,4-bond and the formation of a 1,6-bond using the linear chain (six to seven Glc units). Thus, branching enzymes are thought to interact with starch synthases in formation of amylopectin. Three SBE isozymes differing in enzymatic, chromatographic, and immunological properties have been resolved in maize endosperm, SBE I, SBE IIa, and SBE IIb. Recently, analysis of SBE I, SBE IIa, and SBE IIb revealed that SBE I may preferentially branch long chains of alpha -glucan, whereas SBE IIa and SBE IIb may play a different role in branching short chains during starch biosynthesis. We previously reported the cloning of a cDNA encoding SBE II from maize endosperm. Using antibodies to purified SBE I protein from maize endosperm, Baba et al. (1991) isolated a partial-length cDNA encoding the SBE I isoform. This cDNA lacks the entire open reading frame, because no ATG codon was found 5' of the known plastid signal peptide cleavage site. Based on similarity to the rice SBE I-like cDNA (rbe1), it was hypothesized that the SBE I cDNA lacked only two bases of the coding region.</description><subject>1,4-alpha-Glucan Branching Enzyme - genetics</subject><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>ADN</subject><subject>ALMIDON</subject><subject>AMIDON</subject><subject>Amino acids</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>BIOSINTESIS</subject><subject>BIOSYNTHESE</subject><subject>BIOSYNTHESIS</subject><subject>Branching</subject><subject>CODE GENETIQUE</subject><subject>CODIGO GENETICO</subject><subject>COMPLEMENTARY DNA</subject><subject>Corn</subject><subject>DNA</subject><subject>DNA, Complementary</subject><subject>Endosperm</subject><subject>ENREGISTREMENT</subject><subject>Enzymes</subject><subject>ENZYMIC ACTIVITY</subject><subject>Five prime untranslated regions</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>genbank/u17897</subject><subject>GENE</subject><subject>GENES</subject><subject>Genes. Genome</subject><subject>GENETIC CODE</subject><subject>GENETIC REGULATION</subject><subject>GENETICA</subject><subject>GENETICS</subject><subject>GENETIQUE</subject><subject>glucanotransferase</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>molecular sequences</subject><subject>NUCLEOTIDE SEQUENCE</subject><subject>Open reading frames</subject><subject>Plant Gene Register</subject><subject>REGISTRATION</subject><subject>REGISTRO</subject><subject>SECUENCIA NUCLEOTIDICA</subject><subject>SEQUENCE NUCLEOTIDIQUE</subject><subject>STARCH</subject><subject>Starches</subject><subject>Three prime untranslated regions</subject><subject>TRANSFERASAS</subject><subject>TRANSFERASE</subject><subject>TRANSFERASES</subject><subject>ZEA MAYS</subject><subject>Zea mays - enzymology</subject><subject>Zea mays - genetics</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAUhYMoOj6WbkShC3HXMe-kC4XBN4gu1HXIpMlMpW1q0hH015syw6ArVznc893LzT0AHCI4RgjS864bIyjHZIwIIhtghBjBOWZUboIRhElDKYsdsBvjO4QwQXQbbAtOYMH4CFxOMnP9NMlsa3xZtbMs9jqYeTYNujXzoWDb76_GZg-ZC77JGl1921QrfexsaPbBltN1tAerdw-83d68Xt3nj893D1eTx9xQifpcOE5Y6XgpmSxs0gVx2MkClcIJig2UEJXEMiokNpI5wx0utYFTai3SGpM9cLGc2y2mjS2Nbfuga9WFqtHhS3ldqb9OW83VzH8qxAQteOo_W_UH_7GwsVdNFY2ta91av4hKCEpQOs-_IGKSM8xlAvMlaIKPMVi3XgZBNQSjui5JqYgagkn8ye8frOlVEsk_Xfk6Gl274f5VXGOEE87JMOZ4ib3H3oe1TbHgAg720dJ22is9C2nC20shEBVMkh9Np6cR</recordid><startdate>19950701</startdate><enddate>19950701</enddate><creator>Fisher, D.K. (The Pennsylvania State University, University Park, PA.)</creator><creator>Kim, K.N</creator><creator>Gao, M</creator><creator>Boyer, C.D</creator><creator>Guiltinan, M.J</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19950701</creationdate><title>A cDNA encoding starch branching enzyme I from maize endosperm</title><author>Fisher, D.K. (The Pennsylvania State University, University Park, PA.) ; Kim, K.N ; Gao, M ; Boyer, C.D ; Guiltinan, M.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-7f635df6d8589e63593f2f891d7f742c0801d3e54782c85fc6f2dac0b4ee1aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>1,4-alpha-Glucan Branching Enzyme - genetics</topic><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>ADN</topic><topic>ALMIDON</topic><topic>AMIDON</topic><topic>Amino acids</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>BIOSINTESIS</topic><topic>BIOSYNTHESE</topic><topic>BIOSYNTHESIS</topic><topic>Branching</topic><topic>CODE GENETIQUE</topic><topic>CODIGO GENETICO</topic><topic>COMPLEMENTARY DNA</topic><topic>Corn</topic><topic>DNA</topic><topic>DNA, Complementary</topic><topic>Endosperm</topic><topic>ENREGISTREMENT</topic><topic>Enzymes</topic><topic>ENZYMIC ACTIVITY</topic><topic>Five prime untranslated regions</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>genbank/u17897</topic><topic>GENE</topic><topic>GENES</topic><topic>Genes. Genome</topic><topic>GENETIC CODE</topic><topic>GENETIC REGULATION</topic><topic>GENETICA</topic><topic>GENETICS</topic><topic>GENETIQUE</topic><topic>glucanotransferase</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>molecular sequences</topic><topic>NUCLEOTIDE SEQUENCE</topic><topic>Open reading frames</topic><topic>Plant Gene Register</topic><topic>REGISTRATION</topic><topic>REGISTRO</topic><topic>SECUENCIA NUCLEOTIDICA</topic><topic>SEQUENCE NUCLEOTIDIQUE</topic><topic>STARCH</topic><topic>Starches</topic><topic>Three prime untranslated regions</topic><topic>TRANSFERASAS</topic><topic>TRANSFERASE</topic><topic>TRANSFERASES</topic><topic>ZEA MAYS</topic><topic>Zea mays - enzymology</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisher, D.K. (The Pennsylvania State University, University Park, PA.)</creatorcontrib><creatorcontrib>Kim, K.N</creatorcontrib><creatorcontrib>Gao, M</creatorcontrib><creatorcontrib>Boyer, C.D</creatorcontrib><creatorcontrib>Guiltinan, M.J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisher, D.K. (The Pennsylvania State University, University Park, PA.)</au><au>Kim, K.N</au><au>Gao, M</au><au>Boyer, C.D</au><au>Guiltinan, M.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cDNA encoding starch branching enzyme I from maize endosperm</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>1995-07-01</date><risdate>1995</risdate><volume>108</volume><issue>3</issue><spage>1313</spage><epage>1314</epage><pages>1313-1314</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>ADP-Glc pyrophosphorylase (EC 2.7.7.27), starch synthases (EC 2.4.1.21), and SBEs (EC 2.4.1.18) are the key enzymes in the pathway of plant starch biosynthesis. Starch is a polymer of Glc that exists as two fractions, amylose and amylopectin, in maize (Zea mays L.) kernel amyloplasts. The essentially linear polymer amylose contains alpha -1,4-linked Glc, whereas the branched polymer amylopectin contains 5% alpha -1,6-linked Glc in addition to linear regions of alpha -1,4-linked Glc. Amylopectin synthesis requires the action of SBE, which catalyzes the formation of alpha -1,6-linkages. The branching process involves two steps with the hydrolysis of an internal 1,4-bond and the formation of a 1,6-bond using the linear chain (six to seven Glc units). Thus, branching enzymes are thought to interact with starch synthases in formation of amylopectin. Three SBE isozymes differing in enzymatic, chromatographic, and immunological properties have been resolved in maize endosperm, SBE I, SBE IIa, and SBE IIb. Recently, analysis of SBE I, SBE IIa, and SBE IIb revealed that SBE I may preferentially branch long chains of alpha -glucan, whereas SBE IIa and SBE IIb may play a different role in branching short chains during starch biosynthesis. We previously reported the cloning of a cDNA encoding SBE II from maize endosperm. Using antibodies to purified SBE I protein from maize endosperm, Baba et al. (1991) isolated a partial-length cDNA encoding the SBE I isoform. This cDNA lacks the entire open reading frame, because no ATG codon was found 5' of the known plastid signal peptide cleavage site. Based on similarity to the rice SBE I-like cDNA (rbe1), it was hypothesized that the SBE I cDNA lacked only two bases of the coding region.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>7630956</pmid><doi>10.1104/pp.108.3.1313</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 1995-07, Vol.108 (3), p.1313-1314
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_157496
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection
subjects 1,4-alpha-Glucan Branching Enzyme - genetics
ACTIVIDAD ENZIMATICA
ACTIVITE ENZYMATIQUE
ADN
ALMIDON
AMIDON
Amino acids
Base Sequence
Biological and medical sciences
BIOSINTESIS
BIOSYNTHESE
BIOSYNTHESIS
Branching
CODE GENETIQUE
CODIGO GENETICO
COMPLEMENTARY DNA
Corn
DNA
DNA, Complementary
Endosperm
ENREGISTREMENT
Enzymes
ENZYMIC ACTIVITY
Five prime untranslated regions
Fundamental and applied biological sciences. Psychology
genbank/u17897
GENE
GENES
Genes. Genome
GENETIC CODE
GENETIC REGULATION
GENETICA
GENETICS
GENETIQUE
glucanotransferase
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
molecular sequences
NUCLEOTIDE SEQUENCE
Open reading frames
Plant Gene Register
REGISTRATION
REGISTRO
SECUENCIA NUCLEOTIDICA
SEQUENCE NUCLEOTIDIQUE
STARCH
Starches
Three prime untranslated regions
TRANSFERASAS
TRANSFERASE
TRANSFERASES
ZEA MAYS
Zea mays - enzymology
Zea mays - genetics
title A cDNA encoding starch branching enzyme I from maize endosperm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cDNA%20encoding%20starch%20branching%20enzyme%20I%20from%20maize%20endosperm&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Fisher,%20D.K.%20(The%20Pennsylvania%20State%20University,%20University%20Park,%20PA.)&rft.date=1995-07-01&rft.volume=108&rft.issue=3&rft.spage=1313&rft.epage=1314&rft.pages=1313-1314&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.108.3.1313&rft_dat=%3Cjstor_pubme%3E4276703%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15865268&rft_id=info:pmid/7630956&rft_jstor_id=4276703&rfr_iscdi=true