Cyclosporin A‐induced free radical generation is not mediated by cytochrome P‐450

Reactive oxygen species (ROS) have been proposed to play a role in the side effects of the immunosuppressive drug cyclosporin A (CsA). The aim of this study was to investigate whether cytochrome P‐450 (CYP) dependent metabolism of CsA could be responsible for ROS generation since it has been suggest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of pharmacology 2002-02, Vol.135 (4), p.977-986
Hauptverfasser: Krauskopf, Alexandra, Buetler, Timo M, Nguyen, Nathalie S D, Macé, Katherine, Ruegg, Urs T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 986
container_issue 4
container_start_page 977
container_title British journal of pharmacology
container_volume 135
creator Krauskopf, Alexandra
Buetler, Timo M
Nguyen, Nathalie S D
Macé, Katherine
Ruegg, Urs T
description Reactive oxygen species (ROS) have been proposed to play a role in the side effects of the immunosuppressive drug cyclosporin A (CsA). The aim of this study was to investigate whether cytochrome P‐450 (CYP) dependent metabolism of CsA could be responsible for ROS generation since it has been suggested that CsA may influence the CYP system to produce ROS. We show that CsA (1 – 10 μM) generated antioxidant‐inhibitable ROS in rat aortic smooth muscle cells (RASMC) using the fluorescent probe 2,7‐dichlorofluorescin diacetate. Using cytochrome c as substrate, we show that CsA (10 μM) did not inhibit NADPH cytochrome P‐450 reductase in microsomes prepared from rat liver, kidney or RASMC. CsA (10 μM) did not uncouple the electron flow from NADPH via NADPH cytochrome P‐450 reductase to the CYP enzymes because CsA did not inhibit the metabolism of substrates selective for several CYP enzymes that do not metabolize CsA in rat liver microsomes. CsA (10 μM) did not generate more radicals in CYP 3A4 expressing immortalized human liver epithelial cells (T5‐3A4 cells) than in control cells that do not express CYP 3A4. Neither diphenylene iodonium nor the CYP 3A inhibitor ketoconazole were able to block ROS formation in rat aortic smooth muscle or T5‐3A4 cells. These results demonstrate that CYP enzymes do not contribute to CsA‐induced ROS formation and that CsA neither inhibits NADPH cytochrome P‐450 reductase nor the electron transfer to the CYP enzymes. British Journal of Pharmacology (2002) 135, 977–986; doi:10.1038/sj.bjp.0704544
doi_str_mv 10.1038/sj.bjp.0704544
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1573208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024119541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4875-f24006ae84d8e00f270f4e3485938b1b8381dc9c74abcbcd2f677d7d0d17bf463</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS1ERYfCliWykGCX4Tp2Ys8GqYyAVqpEF3RtOf5pHWXswU5A2fUR-ow8CUYTtYUNK1u-n8899x6EXhFYE6Dife7XXb9fAwfWMPYErQjjbdVQQZ6iFQDwihAhjtHznHuAUuTNM3Rc3lpC63aFrrazHmLex-QDPv11e-eDmbQ12CVrcVLGazXgaxtsUqOPAfuMQxzxzhqvxsJ1M9bzGPVNijuLL4sCa-AFOnJqyPblcp6gq8-fvm3PqouvX863pxeVZoI3lasZQKusYEZYAFdzcMxSJpoNFR3pRBnD6I3mTHW606Z2LeeGGzCEd4619AR9OOjup6440jaMSQ1yn_xOpVlG5eXfleBv5HX8IUnDaQ2iCLxbBFL8Ptk8yp3P2g6DCjZOWfKyMSHIpoBv_gH7OKVQhpM14WRDaqgLtD5AOsWck3X3TgjIP3HJ3MsSl1ziKh9eP_b_gC_5FODtAqhcgnBJBe3zA0db4KV_4eiB--kHO_-nrfx4ecbKjf4Gvnewmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217191202</pqid></control><display><type>article</type><title>Cyclosporin A‐induced free radical generation is not mediated by cytochrome P‐450</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Krauskopf, Alexandra ; Buetler, Timo M ; Nguyen, Nathalie S D ; Macé, Katherine ; Ruegg, Urs T</creator><creatorcontrib>Krauskopf, Alexandra ; Buetler, Timo M ; Nguyen, Nathalie S D ; Macé, Katherine ; Ruegg, Urs T</creatorcontrib><description>Reactive oxygen species (ROS) have been proposed to play a role in the side effects of the immunosuppressive drug cyclosporin A (CsA). The aim of this study was to investigate whether cytochrome P‐450 (CYP) dependent metabolism of CsA could be responsible for ROS generation since it has been suggested that CsA may influence the CYP system to produce ROS. We show that CsA (1 – 10 μM) generated antioxidant‐inhibitable ROS in rat aortic smooth muscle cells (RASMC) using the fluorescent probe 2,7‐dichlorofluorescin diacetate. Using cytochrome c as substrate, we show that CsA (10 μM) did not inhibit NADPH cytochrome P‐450 reductase in microsomes prepared from rat liver, kidney or RASMC. CsA (10 μM) did not uncouple the electron flow from NADPH via NADPH cytochrome P‐450 reductase to the CYP enzymes because CsA did not inhibit the metabolism of substrates selective for several CYP enzymes that do not metabolize CsA in rat liver microsomes. CsA (10 μM) did not generate more radicals in CYP 3A4 expressing immortalized human liver epithelial cells (T5‐3A4 cells) than in control cells that do not express CYP 3A4. Neither diphenylene iodonium nor the CYP 3A inhibitor ketoconazole were able to block ROS formation in rat aortic smooth muscle or T5‐3A4 cells. These results demonstrate that CYP enzymes do not contribute to CsA‐induced ROS formation and that CsA neither inhibits NADPH cytochrome P‐450 reductase nor the electron transfer to the CYP enzymes. British Journal of Pharmacology (2002) 135, 977–986; doi:10.1038/sj.bjp.0704544</description><identifier>ISSN: 0007-1188</identifier><identifier>EISSN: 1476-5381</identifier><identifier>DOI: 10.1038/sj.bjp.0704544</identifier><identifier>PMID: 11861326</identifier><identifier>CODEN: BJPCBM</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Aorta - cytology ; Biological and medical sciences ; Cells, Cultured ; Cyclosporin A ; Cyclosporine - pharmacology ; Cytochrome P-450 CYP3A ; Cytochrome P-450 Enzyme Inhibitors ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; cytochrome P‐450 ; Drug toxicity and drugs side effects treatment ; Enzyme Inhibitors - pharmacology ; Epithelial Cells - enzymology ; Epithelial Cells - metabolism ; Free Radicals - metabolism ; Humans ; Immunosuppressive Agents - pharmacology ; In Vitro Techniques ; Male ; Medical sciences ; metabolism ; microsomes ; Microsomes, Liver - enzymology ; Microsomes, Liver - metabolism ; Muscle, Smooth, Vascular - cytology ; Muscle, Smooth, Vascular - enzymology ; Muscle, Smooth, Vascular - metabolism ; NADPH cytochrome P‐450 reductase ; Pharmacology. Drug treatments ; Rats ; Rats, Inbred WKY ; Rats, Sprague-Dawley ; reactive oxygen species ; Reactive Oxygen Species - metabolism ; RNA, Messenger - analysis ; smooth muscle cells ; Toxicity: digestive system</subject><ispartof>British journal of pharmacology, 2002-02, Vol.135 (4), p.977-986</ispartof><rights>2002 British Pharmacological Society</rights><rights>2002 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Feb 2002</rights><rights>Copyright 2002, Nature Publishing Group 2002 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4875-f24006ae84d8e00f270f4e3485938b1b8381dc9c74abcbcd2f677d7d0d17bf463</citedby><cites>FETCH-LOGICAL-c4875-f24006ae84d8e00f270f4e3485938b1b8381dc9c74abcbcd2f677d7d0d17bf463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573208/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573208/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,1419,1435,27931,27932,45581,45582,46416,46840,53798,53800</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13607217$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11861326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krauskopf, Alexandra</creatorcontrib><creatorcontrib>Buetler, Timo M</creatorcontrib><creatorcontrib>Nguyen, Nathalie S D</creatorcontrib><creatorcontrib>Macé, Katherine</creatorcontrib><creatorcontrib>Ruegg, Urs T</creatorcontrib><title>Cyclosporin A‐induced free radical generation is not mediated by cytochrome P‐450</title><title>British journal of pharmacology</title><addtitle>Br J Pharmacol</addtitle><description>Reactive oxygen species (ROS) have been proposed to play a role in the side effects of the immunosuppressive drug cyclosporin A (CsA). The aim of this study was to investigate whether cytochrome P‐450 (CYP) dependent metabolism of CsA could be responsible for ROS generation since it has been suggested that CsA may influence the CYP system to produce ROS. We show that CsA (1 – 10 μM) generated antioxidant‐inhibitable ROS in rat aortic smooth muscle cells (RASMC) using the fluorescent probe 2,7‐dichlorofluorescin diacetate. Using cytochrome c as substrate, we show that CsA (10 μM) did not inhibit NADPH cytochrome P‐450 reductase in microsomes prepared from rat liver, kidney or RASMC. CsA (10 μM) did not uncouple the electron flow from NADPH via NADPH cytochrome P‐450 reductase to the CYP enzymes because CsA did not inhibit the metabolism of substrates selective for several CYP enzymes that do not metabolize CsA in rat liver microsomes. CsA (10 μM) did not generate more radicals in CYP 3A4 expressing immortalized human liver epithelial cells (T5‐3A4 cells) than in control cells that do not express CYP 3A4. Neither diphenylene iodonium nor the CYP 3A inhibitor ketoconazole were able to block ROS formation in rat aortic smooth muscle or T5‐3A4 cells. These results demonstrate that CYP enzymes do not contribute to CsA‐induced ROS formation and that CsA neither inhibits NADPH cytochrome P‐450 reductase nor the electron transfer to the CYP enzymes. British Journal of Pharmacology (2002) 135, 977–986; doi:10.1038/sj.bjp.0704544</description><subject>Animals</subject><subject>Aorta - cytology</subject><subject>Biological and medical sciences</subject><subject>Cells, Cultured</subject><subject>Cyclosporin A</subject><subject>Cyclosporine - pharmacology</subject><subject>Cytochrome P-450 CYP3A</subject><subject>Cytochrome P-450 Enzyme Inhibitors</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>cytochrome P‐450</subject><subject>Drug toxicity and drugs side effects treatment</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Epithelial Cells - enzymology</subject><subject>Epithelial Cells - metabolism</subject><subject>Free Radicals - metabolism</subject><subject>Humans</subject><subject>Immunosuppressive Agents - pharmacology</subject><subject>In Vitro Techniques</subject><subject>Male</subject><subject>Medical sciences</subject><subject>metabolism</subject><subject>microsomes</subject><subject>Microsomes, Liver - enzymology</subject><subject>Microsomes, Liver - metabolism</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Muscle, Smooth, Vascular - enzymology</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>NADPH cytochrome P‐450 reductase</subject><subject>Pharmacology. Drug treatments</subject><subject>Rats</subject><subject>Rats, Inbred WKY</subject><subject>Rats, Sprague-Dawley</subject><subject>reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>RNA, Messenger - analysis</subject><subject>smooth muscle cells</subject><subject>Toxicity: digestive system</subject><issn>0007-1188</issn><issn>1476-5381</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1u1DAUhS1ERYfCliWykGCX4Tp2Ys8GqYyAVqpEF3RtOf5pHWXswU5A2fUR-ow8CUYTtYUNK1u-n8899x6EXhFYE6Dife7XXb9fAwfWMPYErQjjbdVQQZ6iFQDwihAhjtHznHuAUuTNM3Rc3lpC63aFrrazHmLex-QDPv11e-eDmbQ12CVrcVLGazXgaxtsUqOPAfuMQxzxzhqvxsJ1M9bzGPVNijuLL4sCa-AFOnJqyPblcp6gq8-fvm3PqouvX863pxeVZoI3lasZQKusYEZYAFdzcMxSJpoNFR3pRBnD6I3mTHW606Z2LeeGGzCEd4619AR9OOjup6440jaMSQ1yn_xOpVlG5eXfleBv5HX8IUnDaQ2iCLxbBFL8Ptk8yp3P2g6DCjZOWfKyMSHIpoBv_gH7OKVQhpM14WRDaqgLtD5AOsWck3X3TgjIP3HJ3MsSl1ziKh9eP_b_gC_5FODtAqhcgnBJBe3zA0db4KV_4eiB--kHO_-nrfx4ecbKjf4Gvnewmw</recordid><startdate>200202</startdate><enddate>200202</enddate><creator>Krauskopf, Alexandra</creator><creator>Buetler, Timo M</creator><creator>Nguyen, Nathalie S D</creator><creator>Macé, Katherine</creator><creator>Ruegg, Urs T</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200202</creationdate><title>Cyclosporin A‐induced free radical generation is not mediated by cytochrome P‐450</title><author>Krauskopf, Alexandra ; Buetler, Timo M ; Nguyen, Nathalie S D ; Macé, Katherine ; Ruegg, Urs T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4875-f24006ae84d8e00f270f4e3485938b1b8381dc9c74abcbcd2f677d7d0d17bf463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Aorta - cytology</topic><topic>Biological and medical sciences</topic><topic>Cells, Cultured</topic><topic>Cyclosporin A</topic><topic>Cyclosporine - pharmacology</topic><topic>Cytochrome P-450 CYP3A</topic><topic>Cytochrome P-450 Enzyme Inhibitors</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>cytochrome P‐450</topic><topic>Drug toxicity and drugs side effects treatment</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Epithelial Cells - enzymology</topic><topic>Epithelial Cells - metabolism</topic><topic>Free Radicals - metabolism</topic><topic>Humans</topic><topic>Immunosuppressive Agents - pharmacology</topic><topic>In Vitro Techniques</topic><topic>Male</topic><topic>Medical sciences</topic><topic>metabolism</topic><topic>microsomes</topic><topic>Microsomes, Liver - enzymology</topic><topic>Microsomes, Liver - metabolism</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Muscle, Smooth, Vascular - enzymology</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>NADPH cytochrome P‐450 reductase</topic><topic>Pharmacology. Drug treatments</topic><topic>Rats</topic><topic>Rats, Inbred WKY</topic><topic>Rats, Sprague-Dawley</topic><topic>reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>RNA, Messenger - analysis</topic><topic>smooth muscle cells</topic><topic>Toxicity: digestive system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krauskopf, Alexandra</creatorcontrib><creatorcontrib>Buetler, Timo M</creatorcontrib><creatorcontrib>Nguyen, Nathalie S D</creatorcontrib><creatorcontrib>Macé, Katherine</creatorcontrib><creatorcontrib>Ruegg, Urs T</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krauskopf, Alexandra</au><au>Buetler, Timo M</au><au>Nguyen, Nathalie S D</au><au>Macé, Katherine</au><au>Ruegg, Urs T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclosporin A‐induced free radical generation is not mediated by cytochrome P‐450</atitle><jtitle>British journal of pharmacology</jtitle><addtitle>Br J Pharmacol</addtitle><date>2002-02</date><risdate>2002</risdate><volume>135</volume><issue>4</issue><spage>977</spage><epage>986</epage><pages>977-986</pages><issn>0007-1188</issn><eissn>1476-5381</eissn><coden>BJPCBM</coden><abstract>Reactive oxygen species (ROS) have been proposed to play a role in the side effects of the immunosuppressive drug cyclosporin A (CsA). The aim of this study was to investigate whether cytochrome P‐450 (CYP) dependent metabolism of CsA could be responsible for ROS generation since it has been suggested that CsA may influence the CYP system to produce ROS. We show that CsA (1 – 10 μM) generated antioxidant‐inhibitable ROS in rat aortic smooth muscle cells (RASMC) using the fluorescent probe 2,7‐dichlorofluorescin diacetate. Using cytochrome c as substrate, we show that CsA (10 μM) did not inhibit NADPH cytochrome P‐450 reductase in microsomes prepared from rat liver, kidney or RASMC. CsA (10 μM) did not uncouple the electron flow from NADPH via NADPH cytochrome P‐450 reductase to the CYP enzymes because CsA did not inhibit the metabolism of substrates selective for several CYP enzymes that do not metabolize CsA in rat liver microsomes. CsA (10 μM) did not generate more radicals in CYP 3A4 expressing immortalized human liver epithelial cells (T5‐3A4 cells) than in control cells that do not express CYP 3A4. Neither diphenylene iodonium nor the CYP 3A inhibitor ketoconazole were able to block ROS formation in rat aortic smooth muscle or T5‐3A4 cells. These results demonstrate that CYP enzymes do not contribute to CsA‐induced ROS formation and that CsA neither inhibits NADPH cytochrome P‐450 reductase nor the electron transfer to the CYP enzymes. British Journal of Pharmacology (2002) 135, 977–986; doi:10.1038/sj.bjp.0704544</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>11861326</pmid><doi>10.1038/sj.bjp.0704544</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1188
ispartof British journal of pharmacology, 2002-02, Vol.135 (4), p.977-986
issn 0007-1188
1476-5381
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1573208
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
subjects Animals
Aorta - cytology
Biological and medical sciences
Cells, Cultured
Cyclosporin A
Cyclosporine - pharmacology
Cytochrome P-450 CYP3A
Cytochrome P-450 Enzyme Inhibitors
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
cytochrome P‐450
Drug toxicity and drugs side effects treatment
Enzyme Inhibitors - pharmacology
Epithelial Cells - enzymology
Epithelial Cells - metabolism
Free Radicals - metabolism
Humans
Immunosuppressive Agents - pharmacology
In Vitro Techniques
Male
Medical sciences
metabolism
microsomes
Microsomes, Liver - enzymology
Microsomes, Liver - metabolism
Muscle, Smooth, Vascular - cytology
Muscle, Smooth, Vascular - enzymology
Muscle, Smooth, Vascular - metabolism
NADPH cytochrome P‐450 reductase
Pharmacology. Drug treatments
Rats
Rats, Inbred WKY
Rats, Sprague-Dawley
reactive oxygen species
Reactive Oxygen Species - metabolism
RNA, Messenger - analysis
smooth muscle cells
Toxicity: digestive system
title Cyclosporin A‐induced free radical generation is not mediated by cytochrome P‐450
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclosporin%20A%E2%80%90induced%20free%20radical%20generation%20is%20not%20mediated%20by%20cytochrome%20P%E2%80%90450&rft.jtitle=British%20journal%20of%20pharmacology&rft.au=Krauskopf,%20Alexandra&rft.date=2002-02&rft.volume=135&rft.issue=4&rft.spage=977&rft.epage=986&rft.pages=977-986&rft.issn=0007-1188&rft.eissn=1476-5381&rft.coden=BJPCBM&rft_id=info:doi/10.1038/sj.bjp.0704544&rft_dat=%3Cproquest_pubme%3E1024119541%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217191202&rft_id=info:pmid/11861326&rfr_iscdi=true