Tissue‐specific expression of human lipoprotein lipase in the vascular system affects vascular reactivity in transgenic mice

The role of smooth muscle‐derived lipoprotein lipase (LPL) that translocates to the endothelium surface on vascular dysfunction during atherogenesis is unclear. Thus, the role of vascular LPL on blood vessel reactivity was assessed in transgenic mice that specifically express human LPL in the circul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of pharmacology 2002-01, Vol.135 (1), p.143-154
Hauptverfasser: Esenabhalu, Victor E, Cerimagic, Mirza, Malli, Roland, Osibow, Karin, Levak‐Frank, Sanja, Frieden, Maud, Sattler, Wolfgang, Kostner, Gerhard M, Zechner, Rudolf, Graier, Wolfgang F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 1
container_start_page 143
container_title British journal of pharmacology
container_volume 135
creator Esenabhalu, Victor E
Cerimagic, Mirza
Malli, Roland
Osibow, Karin
Levak‐Frank, Sanja
Frieden, Maud
Sattler, Wolfgang
Kostner, Gerhard M
Zechner, Rudolf
Graier, Wolfgang F
description The role of smooth muscle‐derived lipoprotein lipase (LPL) that translocates to the endothelium surface on vascular dysfunction during atherogenesis is unclear. Thus, the role of vascular LPL on blood vessel reactivity was assessed in transgenic mice that specifically express human LPL in the circulatory system. Aortic free fatty acids (FFAs) were increased by 69% in the transgenic mice expressing human LPL in aortic smooth muscle cells (L2LPL) compared with their non‐transgenic littermates (L2). Contractility to KCl was increased by 33% in aortae of L2LPL mice. Maximal contraction to phenylephrine (PE) was comparable in L2 and L2LPL animals, while the frequency of tonus oscillation to PE increased by 104% in L2LPL mice. In L2LPL animals, •NO mediated relaxation to acetylcholine (ACh) and ATP was reduced by 47 and 32%, respectively. In contrast, endothelium‐independent relaxation to sodium nitroprusside (SNP) was not different in both groups tested. ATP‐initiated Ca2+ elevation that triggers •NO formation was increased by 41% in single aortic endothelial cells freshly isolated from L2LPL animals. In aortae from L2LPL mice an increased •O2− release occurred that was normalized by removing the endothelium and by the NAD(P)H oxidase inhibitor DPI and the PKC inhibitor GF109203X. The reduced ACh‐induced relaxation in L2LPL animals was normalized in the presence of SOD, indicating that the reduced relaxation is due, at least in part, to enhanced •NO scavenging by •O2−. These data suggest that despite normal lipoprotein levels increased LPL‐mediated FFAs loading initiates vascular dysfunction via PKC‐mediated activation of endothelial NAD(P)H oxidase. Thus, vascular LPL activity might represent a primary risk factor for atherosclerosis independently from cholesterol/LDL levels. British Journal of Pharmacology (2002) 135, 143–154; doi:10.1038/sj.bjp.0704440
doi_str_mv 10.1038/sj.bjp.0704440
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1573105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71351831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4876-16e370d38a9bcb9409809e2b5ed9a35b0a6394c22d0ffd83739e5aeba42a205f3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhyhFFSHDbxY7t2LkglQooUiU4lLPlOJOuoyQOnmRhL1UfgWfkSTDdiAUunDzyfDPzz_yEPGV0wyjXr7DdVO24oYoKIeg9smJCFWvJNbtPVpRStWZM6xPyCLGlNCWVfEhOGFO6ECVdkZsrjzjDj9vvOILzjXcZfBsjIPowZKHJtnNvh6zzYxhjmMDfxRYhS9G0hWxn0c2djRnucYI-s00DbsLjfwTrJr_z0_6uJNoBr2FIc3rv4DF50NgO4cnynpLP795enV-sLz--_3B-drl2Qqd9WAFc0ZprW1auKgUtNS0hryTUpeWyorbgpXB5XtOmqTVXvARpobIitzmVDT8lrw99x7nqoXYwJCGdGaPvbdybYL35OzP4rbkOO8Ok4ozK1ODl0iCGLzPgZHqPDrrODhBmNIpxyTRnCXz-D9iGOQ5pOZMzlbxQiiZoc4BcDIgRmt9KGDW_fDXYmuSrWXxNBc_-1H_EFyMT8GIB0t1t16QzO49HjmshOc8Txw_cV9_B_j9jzZtPF7yUBf8JRnTBLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217188770</pqid></control><display><type>article</type><title>Tissue‐specific expression of human lipoprotein lipase in the vascular system affects vascular reactivity in transgenic mice</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Esenabhalu, Victor E ; Cerimagic, Mirza ; Malli, Roland ; Osibow, Karin ; Levak‐Frank, Sanja ; Frieden, Maud ; Sattler, Wolfgang ; Kostner, Gerhard M ; Zechner, Rudolf ; Graier, Wolfgang F</creator><creatorcontrib>Esenabhalu, Victor E ; Cerimagic, Mirza ; Malli, Roland ; Osibow, Karin ; Levak‐Frank, Sanja ; Frieden, Maud ; Sattler, Wolfgang ; Kostner, Gerhard M ; Zechner, Rudolf ; Graier, Wolfgang F</creatorcontrib><description>The role of smooth muscle‐derived lipoprotein lipase (LPL) that translocates to the endothelium surface on vascular dysfunction during atherogenesis is unclear. Thus, the role of vascular LPL on blood vessel reactivity was assessed in transgenic mice that specifically express human LPL in the circulatory system. Aortic free fatty acids (FFAs) were increased by 69% in the transgenic mice expressing human LPL in aortic smooth muscle cells (L2LPL) compared with their non‐transgenic littermates (L2). Contractility to KCl was increased by 33% in aortae of L2LPL mice. Maximal contraction to phenylephrine (PE) was comparable in L2 and L2LPL animals, while the frequency of tonus oscillation to PE increased by 104% in L2LPL mice. In L2LPL animals, •NO mediated relaxation to acetylcholine (ACh) and ATP was reduced by 47 and 32%, respectively. In contrast, endothelium‐independent relaxation to sodium nitroprusside (SNP) was not different in both groups tested. ATP‐initiated Ca2+ elevation that triggers •NO formation was increased by 41% in single aortic endothelial cells freshly isolated from L2LPL animals. In aortae from L2LPL mice an increased •O2− release occurred that was normalized by removing the endothelium and by the NAD(P)H oxidase inhibitor DPI and the PKC inhibitor GF109203X. The reduced ACh‐induced relaxation in L2LPL animals was normalized in the presence of SOD, indicating that the reduced relaxation is due, at least in part, to enhanced •NO scavenging by •O2−. These data suggest that despite normal lipoprotein levels increased LPL‐mediated FFAs loading initiates vascular dysfunction via PKC‐mediated activation of endothelial NAD(P)H oxidase. Thus, vascular LPL activity might represent a primary risk factor for atherosclerosis independently from cholesterol/LDL levels. British Journal of Pharmacology (2002) 135, 143–154; doi:10.1038/sj.bjp.0704440</description><identifier>ISSN: 0007-1188</identifier><identifier>EISSN: 1476-5381</identifier><identifier>DOI: 10.1038/sj.bjp.0704440</identifier><identifier>PMID: 11786490</identifier><identifier>CODEN: BJPCBM</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Acetylcholine - pharmacology ; Adenosine Triphosphate - pharmacology ; Adipose Tissue - metabolism ; Animals ; Aorta - metabolism ; Atherosclerosis ; Atherosclerosis (general aspects, experimental research) ; Autacoids - pharmacology ; Biological and medical sciences ; Blood and lymphatic vessels ; Blotting, Northern ; Calcium Signaling - drug effects ; Cardiology. Vascular system ; contraction ; Dose-Response Relationship, Drug ; endothelial Ca2 ; Endothelium, Vascular - physiology ; endothelium‐dependent relaxation ; Fatty Acids, Nonesterified - analysis ; free fatty acids ; Gene Expression Regulation ; Humans ; Lipoprotein Lipase - biosynthesis ; Lipoprotein Lipase - genetics ; Medical sciences ; Mice ; Mice, Transgenic ; Muscle, Smooth, Vascular - blood supply ; Muscle, Smooth, Vascular - metabolism ; Myocardium - metabolism ; NADH/NADPH oxidase ; Nitric Oxide - metabolism ; Nitroprusside - pharmacology ; Organ Specificity ; Phenylephrine - pharmacology ; Potassium Chloride - pharmacology ; protein kinase ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; superoxide anions ; Superoxides - metabolism ; Triglycerides - blood ; Vasoconstriction - drug effects ; Vasodilation - drug effects</subject><ispartof>British journal of pharmacology, 2002-01, Vol.135 (1), p.143-154</ispartof><rights>2002 British Pharmacological Society</rights><rights>2002 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Jan 2002</rights><rights>Copyright 2002, Nature Publishing Group 2002 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4876-16e370d38a9bcb9409809e2b5ed9a35b0a6394c22d0ffd83739e5aeba42a205f3</citedby><cites>FETCH-LOGICAL-c4876-16e370d38a9bcb9409809e2b5ed9a35b0a6394c22d0ffd83739e5aeba42a205f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573105/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573105/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,45553,45554,46387,46811,53769,53771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13845332$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11786490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Esenabhalu, Victor E</creatorcontrib><creatorcontrib>Cerimagic, Mirza</creatorcontrib><creatorcontrib>Malli, Roland</creatorcontrib><creatorcontrib>Osibow, Karin</creatorcontrib><creatorcontrib>Levak‐Frank, Sanja</creatorcontrib><creatorcontrib>Frieden, Maud</creatorcontrib><creatorcontrib>Sattler, Wolfgang</creatorcontrib><creatorcontrib>Kostner, Gerhard M</creatorcontrib><creatorcontrib>Zechner, Rudolf</creatorcontrib><creatorcontrib>Graier, Wolfgang F</creatorcontrib><title>Tissue‐specific expression of human lipoprotein lipase in the vascular system affects vascular reactivity in transgenic mice</title><title>British journal of pharmacology</title><addtitle>Br J Pharmacol</addtitle><description>The role of smooth muscle‐derived lipoprotein lipase (LPL) that translocates to the endothelium surface on vascular dysfunction during atherogenesis is unclear. Thus, the role of vascular LPL on blood vessel reactivity was assessed in transgenic mice that specifically express human LPL in the circulatory system. Aortic free fatty acids (FFAs) were increased by 69% in the transgenic mice expressing human LPL in aortic smooth muscle cells (L2LPL) compared with their non‐transgenic littermates (L2). Contractility to KCl was increased by 33% in aortae of L2LPL mice. Maximal contraction to phenylephrine (PE) was comparable in L2 and L2LPL animals, while the frequency of tonus oscillation to PE increased by 104% in L2LPL mice. In L2LPL animals, •NO mediated relaxation to acetylcholine (ACh) and ATP was reduced by 47 and 32%, respectively. In contrast, endothelium‐independent relaxation to sodium nitroprusside (SNP) was not different in both groups tested. ATP‐initiated Ca2+ elevation that triggers •NO formation was increased by 41% in single aortic endothelial cells freshly isolated from L2LPL animals. In aortae from L2LPL mice an increased •O2− release occurred that was normalized by removing the endothelium and by the NAD(P)H oxidase inhibitor DPI and the PKC inhibitor GF109203X. The reduced ACh‐induced relaxation in L2LPL animals was normalized in the presence of SOD, indicating that the reduced relaxation is due, at least in part, to enhanced •NO scavenging by •O2−. These data suggest that despite normal lipoprotein levels increased LPL‐mediated FFAs loading initiates vascular dysfunction via PKC‐mediated activation of endothelial NAD(P)H oxidase. Thus, vascular LPL activity might represent a primary risk factor for atherosclerosis independently from cholesterol/LDL levels. British Journal of Pharmacology (2002) 135, 143–154; doi:10.1038/sj.bjp.0704440</description><subject>Acetylcholine - pharmacology</subject><subject>Adenosine Triphosphate - pharmacology</subject><subject>Adipose Tissue - metabolism</subject><subject>Animals</subject><subject>Aorta - metabolism</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis (general aspects, experimental research)</subject><subject>Autacoids - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Blood and lymphatic vessels</subject><subject>Blotting, Northern</subject><subject>Calcium Signaling - drug effects</subject><subject>Cardiology. Vascular system</subject><subject>contraction</subject><subject>Dose-Response Relationship, Drug</subject><subject>endothelial Ca2</subject><subject>Endothelium, Vascular - physiology</subject><subject>endothelium‐dependent relaxation</subject><subject>Fatty Acids, Nonesterified - analysis</subject><subject>free fatty acids</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>Lipoprotein Lipase - biosynthesis</subject><subject>Lipoprotein Lipase - genetics</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Muscle, Smooth, Vascular - blood supply</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Myocardium - metabolism</subject><subject>NADH/NADPH oxidase</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitroprusside - pharmacology</subject><subject>Organ Specificity</subject><subject>Phenylephrine - pharmacology</subject><subject>Potassium Chloride - pharmacology</subject><subject>protein kinase</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>superoxide anions</subject><subject>Superoxides - metabolism</subject><subject>Triglycerides - blood</subject><subject>Vasoconstriction - drug effects</subject><subject>Vasodilation - drug effects</subject><issn>0007-1188</issn><issn>1476-5381</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkcFu1DAQhi0EokvhyhFFSHDbxY7t2LkglQooUiU4lLPlOJOuoyQOnmRhL1UfgWfkSTDdiAUunDzyfDPzz_yEPGV0wyjXr7DdVO24oYoKIeg9smJCFWvJNbtPVpRStWZM6xPyCLGlNCWVfEhOGFO6ECVdkZsrjzjDj9vvOILzjXcZfBsjIPowZKHJtnNvh6zzYxhjmMDfxRYhS9G0hWxn0c2djRnucYI-s00DbsLjfwTrJr_z0_6uJNoBr2FIc3rv4DF50NgO4cnynpLP795enV-sLz--_3B-drl2Qqd9WAFc0ZprW1auKgUtNS0hryTUpeWyorbgpXB5XtOmqTVXvARpobIitzmVDT8lrw99x7nqoXYwJCGdGaPvbdybYL35OzP4rbkOO8Ok4ozK1ODl0iCGLzPgZHqPDrrODhBmNIpxyTRnCXz-D9iGOQ5pOZMzlbxQiiZoc4BcDIgRmt9KGDW_fDXYmuSrWXxNBc_-1H_EFyMT8GIB0t1t16QzO49HjmshOc8Txw_cV9_B_j9jzZtPF7yUBf8JRnTBLA</recordid><startdate>200201</startdate><enddate>200201</enddate><creator>Esenabhalu, Victor E</creator><creator>Cerimagic, Mirza</creator><creator>Malli, Roland</creator><creator>Osibow, Karin</creator><creator>Levak‐Frank, Sanja</creator><creator>Frieden, Maud</creator><creator>Sattler, Wolfgang</creator><creator>Kostner, Gerhard M</creator><creator>Zechner, Rudolf</creator><creator>Graier, Wolfgang F</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200201</creationdate><title>Tissue‐specific expression of human lipoprotein lipase in the vascular system affects vascular reactivity in transgenic mice</title><author>Esenabhalu, Victor E ; Cerimagic, Mirza ; Malli, Roland ; Osibow, Karin ; Levak‐Frank, Sanja ; Frieden, Maud ; Sattler, Wolfgang ; Kostner, Gerhard M ; Zechner, Rudolf ; Graier, Wolfgang F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4876-16e370d38a9bcb9409809e2b5ed9a35b0a6394c22d0ffd83739e5aeba42a205f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Acetylcholine - pharmacology</topic><topic>Adenosine Triphosphate - pharmacology</topic><topic>Adipose Tissue - metabolism</topic><topic>Animals</topic><topic>Aorta - metabolism</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis (general aspects, experimental research)</topic><topic>Autacoids - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Blood and lymphatic vessels</topic><topic>Blotting, Northern</topic><topic>Calcium Signaling - drug effects</topic><topic>Cardiology. Vascular system</topic><topic>contraction</topic><topic>Dose-Response Relationship, Drug</topic><topic>endothelial Ca2</topic><topic>Endothelium, Vascular - physiology</topic><topic>endothelium‐dependent relaxation</topic><topic>Fatty Acids, Nonesterified - analysis</topic><topic>free fatty acids</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>Lipoprotein Lipase - biosynthesis</topic><topic>Lipoprotein Lipase - genetics</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Muscle, Smooth, Vascular - blood supply</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Myocardium - metabolism</topic><topic>NADH/NADPH oxidase</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitroprusside - pharmacology</topic><topic>Organ Specificity</topic><topic>Phenylephrine - pharmacology</topic><topic>Potassium Chloride - pharmacology</topic><topic>protein kinase</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>superoxide anions</topic><topic>Superoxides - metabolism</topic><topic>Triglycerides - blood</topic><topic>Vasoconstriction - drug effects</topic><topic>Vasodilation - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esenabhalu, Victor E</creatorcontrib><creatorcontrib>Cerimagic, Mirza</creatorcontrib><creatorcontrib>Malli, Roland</creatorcontrib><creatorcontrib>Osibow, Karin</creatorcontrib><creatorcontrib>Levak‐Frank, Sanja</creatorcontrib><creatorcontrib>Frieden, Maud</creatorcontrib><creatorcontrib>Sattler, Wolfgang</creatorcontrib><creatorcontrib>Kostner, Gerhard M</creatorcontrib><creatorcontrib>Zechner, Rudolf</creatorcontrib><creatorcontrib>Graier, Wolfgang F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esenabhalu, Victor E</au><au>Cerimagic, Mirza</au><au>Malli, Roland</au><au>Osibow, Karin</au><au>Levak‐Frank, Sanja</au><au>Frieden, Maud</au><au>Sattler, Wolfgang</au><au>Kostner, Gerhard M</au><au>Zechner, Rudolf</au><au>Graier, Wolfgang F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tissue‐specific expression of human lipoprotein lipase in the vascular system affects vascular reactivity in transgenic mice</atitle><jtitle>British journal of pharmacology</jtitle><addtitle>Br J Pharmacol</addtitle><date>2002-01</date><risdate>2002</risdate><volume>135</volume><issue>1</issue><spage>143</spage><epage>154</epage><pages>143-154</pages><issn>0007-1188</issn><eissn>1476-5381</eissn><coden>BJPCBM</coden><abstract>The role of smooth muscle‐derived lipoprotein lipase (LPL) that translocates to the endothelium surface on vascular dysfunction during atherogenesis is unclear. Thus, the role of vascular LPL on blood vessel reactivity was assessed in transgenic mice that specifically express human LPL in the circulatory system. Aortic free fatty acids (FFAs) were increased by 69% in the transgenic mice expressing human LPL in aortic smooth muscle cells (L2LPL) compared with their non‐transgenic littermates (L2). Contractility to KCl was increased by 33% in aortae of L2LPL mice. Maximal contraction to phenylephrine (PE) was comparable in L2 and L2LPL animals, while the frequency of tonus oscillation to PE increased by 104% in L2LPL mice. In L2LPL animals, •NO mediated relaxation to acetylcholine (ACh) and ATP was reduced by 47 and 32%, respectively. In contrast, endothelium‐independent relaxation to sodium nitroprusside (SNP) was not different in both groups tested. ATP‐initiated Ca2+ elevation that triggers •NO formation was increased by 41% in single aortic endothelial cells freshly isolated from L2LPL animals. In aortae from L2LPL mice an increased •O2− release occurred that was normalized by removing the endothelium and by the NAD(P)H oxidase inhibitor DPI and the PKC inhibitor GF109203X. The reduced ACh‐induced relaxation in L2LPL animals was normalized in the presence of SOD, indicating that the reduced relaxation is due, at least in part, to enhanced •NO scavenging by •O2−. These data suggest that despite normal lipoprotein levels increased LPL‐mediated FFAs loading initiates vascular dysfunction via PKC‐mediated activation of endothelial NAD(P)H oxidase. Thus, vascular LPL activity might represent a primary risk factor for atherosclerosis independently from cholesterol/LDL levels. British Journal of Pharmacology (2002) 135, 143–154; doi:10.1038/sj.bjp.0704440</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>11786490</pmid><doi>10.1038/sj.bjp.0704440</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1188
ispartof British journal of pharmacology, 2002-01, Vol.135 (1), p.143-154
issn 0007-1188
1476-5381
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1573105
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Acetylcholine - pharmacology
Adenosine Triphosphate - pharmacology
Adipose Tissue - metabolism
Animals
Aorta - metabolism
Atherosclerosis
Atherosclerosis (general aspects, experimental research)
Autacoids - pharmacology
Biological and medical sciences
Blood and lymphatic vessels
Blotting, Northern
Calcium Signaling - drug effects
Cardiology. Vascular system
contraction
Dose-Response Relationship, Drug
endothelial Ca2
Endothelium, Vascular - physiology
endothelium‐dependent relaxation
Fatty Acids, Nonesterified - analysis
free fatty acids
Gene Expression Regulation
Humans
Lipoprotein Lipase - biosynthesis
Lipoprotein Lipase - genetics
Medical sciences
Mice
Mice, Transgenic
Muscle, Smooth, Vascular - blood supply
Muscle, Smooth, Vascular - metabolism
Myocardium - metabolism
NADH/NADPH oxidase
Nitric Oxide - metabolism
Nitroprusside - pharmacology
Organ Specificity
Phenylephrine - pharmacology
Potassium Chloride - pharmacology
protein kinase
RNA, Messenger - genetics
RNA, Messenger - metabolism
superoxide anions
Superoxides - metabolism
Triglycerides - blood
Vasoconstriction - drug effects
Vasodilation - drug effects
title Tissue‐specific expression of human lipoprotein lipase in the vascular system affects vascular reactivity in transgenic mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tissue%E2%80%90specific%20expression%20of%20human%20lipoprotein%20lipase%20in%20the%20vascular%20system%20affects%20vascular%20reactivity%20in%20transgenic%20mice&rft.jtitle=British%20journal%20of%20pharmacology&rft.au=Esenabhalu,%20Victor%20E&rft.date=2002-01&rft.volume=135&rft.issue=1&rft.spage=143&rft.epage=154&rft.pages=143-154&rft.issn=0007-1188&rft.eissn=1476-5381&rft.coden=BJPCBM&rft_id=info:doi/10.1038/sj.bjp.0704440&rft_dat=%3Cproquest_pubme%3E71351831%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217188770&rft_id=info:pmid/11786490&rfr_iscdi=true