Plasma membrane redox enzyme is involved in the synthesis of O2- and H2O2 by Phytophthora elicitor-stimulated rose cells

An elicitor prepared from the autoclaved cell walls of Phytophthora sp. induced O2- generation and H2O2 accumulation by cultured cells of Rosa damascena Mill. cv Gloire de Guilan. N,N-Diethyldithiocarbamate, a superoxide dismutase inhibitor, blocked H2O2 accumulation and caused a dramatic accumulati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1995-04, Vol.107 (4), p.1241-1247
Hauptverfasser: Auh, C.K. (University of California, Davis.), Murphy, T.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An elicitor prepared from the autoclaved cell walls of Phytophthora sp. induced O2- generation and H2O2 accumulation by cultured cells of Rosa damascena Mill. cv Gloire de Guilan. N,N-Diethyldithiocarbamate, a superoxide dismutase inhibitor, blocked H2O2 accumulation and caused a dramatic accumulation of O2- by elicitor-treated rose cells. In the absence of N,N-diethyldithiocarbamate no detectable O2- was accumulated. Diphenyleneiodonium, quinacrine, pyridine, and imidazole, inhibitors of the mammalian neutrophil NADPH oxidase responsible for the generation of O2- during phagocytosis, inhibited O2- generation by elicitor-treated rose cells. Diphenyleneiodonium also inhibited NADH-dependent O2- production by plasma membranes isolated from rose cells. None of the four compounds inhibited the peroxidase activity in the cell-suspension medium. These results demonstrate that elicitor-stimulated accumulation of H2O2 comes only from superoxide dismutase-catalyzed dismutation of O2-. The data are inconsistent with the hypothesis that the synthesis of O2- is catalyzed by extracellular peroxidase and suggest that the enzyme responsible for the synthesis of O2- by elicitor-treated rose cells might be similar to the mammalian neutrophil NADPH oxidase
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.107.4.1241