Active transport of the angiotensin‐II antagonist losartan and its main metabolite EXP 3174 across MDCK‐MDR1 and Caco‐2 cell monolayers

We studied the functional interaction between transport and metabolism by comparing the transport of losartan and its active metabolite EXP 3174 (EXP) across cell monolayers. Epithelial layers of Caco‐2 cells as well as MDR1, MRP‐1 and MRP‐2 overexpressing cells, in comparison to the respective wild...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of pharmacology 2000-03, Vol.129 (6), p.1235-1243
Hauptverfasser: Soldner, Andrea, Benet, Leslie Z, Mutschler, Ernst, Christians, Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1243
container_issue 6
container_start_page 1235
container_title British journal of pharmacology
container_volume 129
creator Soldner, Andrea
Benet, Leslie Z
Mutschler, Ernst
Christians, Uwe
description We studied the functional interaction between transport and metabolism by comparing the transport of losartan and its active metabolite EXP 3174 (EXP) across cell monolayers. Epithelial layers of Caco‐2 cells as well as MDR1, MRP‐1 and MRP‐2 overexpressing cells, in comparison to the respective wildtypes, were used to characterize the transcellular transport of losartan and EXP. Losartan transport in MDCK‐MDR1 and Caco‐2 cells was saturable and energy‐dependent with a significantly greater basolateral‐to‐apical (B/A) than apical‐to‐basolateral (A/B) flux (ratio=31±1 in MDCK‐MDR1 and ratio 4±1 in Caco‐2 cells). The B/A flux of losartan was inhibited by cyclosporine and vinblastine, inhibitors of P‐glycoprotein and MRP. In contrast, no active losartan transport was observed in MRP‐1 or MRP‐2 overexpressing cells. The metabolite was only transported in Caco‐2 cells with a B/A‐to‐A/B ratio of 5±1, while lacking active transport in the MDR1, MRP‐1 or MRP‐2 overexpressing cells. The B/A flux of EXP was significantly inhibited by cyclosporine and vinblastine. In conclusion, losartan is transported by P‐glycoprotein and other intestinal transporters, that do not include MRP‐1 and MRP‐2. In contrast, the carboxylic acid metabolite is not a P‐glycoprotein substrate, but displays considerably higher affinity for other transporters than losartan, that again most probably do not include MRP‐1 and MRP‐2. British Journal of Pharmacology (2000) 129, 1235–1243; doi:10.1038/sj.bjp.0703150
doi_str_mv 10.1038/sj.bjp.0703150
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1571937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1837300188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5858-a32934b6260a21de38b39f0182ac601abddce7b7becd5633fd90ff82348023fd3</originalsourceid><addsrcrecordid>eNqFkcFuEzEQhlcIREPhyhFZiAOXDR47u3YuSCUtNKIVFQKJmzXr9aZe7dqp7RTlxgsg8Yw8CW4TQeHCyRrPN7_9z18UT4FOgXL5KvbTpl9PqaAcKnqvmMBM1GXFJdwvJpRSUQJIeVA8irGnNDdF9bA4ACpYxQSfFN-PdLLXhqSALq59SMR3JF0agm5lfTIuWvfz24_lMl8kXHlnYyKDjxgSunzXEpsiGdE6MpqEjR9sMuTkywXhIGYEdfAxkvPjxfuscn78EW5nFqh9rhnRZhjI6J0fcGtCfFw86HCI5sn-PCw-vz35tDgtzz68Wy6OzkpdyUqWyNmcz5qa1RQZtIbLhs87CpKhrilg07baiEY0RrdVzXnXzmnXScZnkrJc8cPi9U53vWlGk2GX_Q9qHeyIYas8WvV3x9lLtfLXCioBcy6ywMu9QPBXGxOTGm28MYPO-E1UIDOU9y1lRp__g_Z-E1y2pxgIkFRSyNB0B93uK5ju91-AqpugVexVDlrtg84Dz-46uIPvks3Aiz2AUePQ5Xy1jX84NhcM6ozxHfbVDmb7n1fVm4tTXleS_wIYLsUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217180801</pqid></control><display><type>article</type><title>Active transport of the angiotensin‐II antagonist losartan and its main metabolite EXP 3174 across MDCK‐MDR1 and Caco‐2 cell monolayers</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Soldner, Andrea ; Benet, Leslie Z ; Mutschler, Ernst ; Christians, Uwe</creator><creatorcontrib>Soldner, Andrea ; Benet, Leslie Z ; Mutschler, Ernst ; Christians, Uwe</creatorcontrib><description>We studied the functional interaction between transport and metabolism by comparing the transport of losartan and its active metabolite EXP 3174 (EXP) across cell monolayers. Epithelial layers of Caco‐2 cells as well as MDR1, MRP‐1 and MRP‐2 overexpressing cells, in comparison to the respective wildtypes, were used to characterize the transcellular transport of losartan and EXP. Losartan transport in MDCK‐MDR1 and Caco‐2 cells was saturable and energy‐dependent with a significantly greater basolateral‐to‐apical (B/A) than apical‐to‐basolateral (A/B) flux (ratio=31±1 in MDCK‐MDR1 and ratio 4±1 in Caco‐2 cells). The B/A flux of losartan was inhibited by cyclosporine and vinblastine, inhibitors of P‐glycoprotein and MRP. In contrast, no active losartan transport was observed in MRP‐1 or MRP‐2 overexpressing cells. The metabolite was only transported in Caco‐2 cells with a B/A‐to‐A/B ratio of 5±1, while lacking active transport in the MDR1, MRP‐1 or MRP‐2 overexpressing cells. The B/A flux of EXP was significantly inhibited by cyclosporine and vinblastine. In conclusion, losartan is transported by P‐glycoprotein and other intestinal transporters, that do not include MRP‐1 and MRP‐2. In contrast, the carboxylic acid metabolite is not a P‐glycoprotein substrate, but displays considerably higher affinity for other transporters than losartan, that again most probably do not include MRP‐1 and MRP‐2. British Journal of Pharmacology (2000) 129, 1235–1243; doi:10.1038/sj.bjp.0703150</description><identifier>ISSN: 0007-1188</identifier><identifier>EISSN: 1476-5381</identifier><identifier>DOI: 10.1038/sj.bjp.0703150</identifier><identifier>PMID: 10725273</identifier><identifier>CODEN: BJPCBM</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>2,4-Dinitrophenol - pharmacology ; Angiotensin II - antagonists &amp; inhibitors ; Angiotensin‐II antagonists ; Animals ; Anti-Arrhythmia Agents - metabolism ; Antihypertensive agents ; Antimetabolites - pharmacology ; Biological and medical sciences ; Biological Transport, Active - drug effects ; Caco-2 Cells ; Cardiovascular system ; Cell Line ; Cell physiology ; Chromatography, Liquid ; Dogs ; Energy Metabolism - drug effects ; Energy Metabolism - physiology ; Epithelium - drug effects ; Epithelium - metabolism ; Fundamental and applied biological sciences. Psychology ; Humans ; Imidazoles - metabolism ; intestinal drug transporters ; Kidney - drug effects ; Kidney - metabolism ; Kinetics ; LLC-PK1 Cells ; Losartan - metabolism ; Mass Spectrometry ; MDCK‐MDR1 cells ; Medical sciences ; Membrane and intracellular transports ; Molecular and cellular biology ; Pharmacology. Drug treatments ; P‐glycoprotein ; Swine ; Temperature ; Tetrazoles - metabolism</subject><ispartof>British journal of pharmacology, 2000-03, Vol.129 (6), p.1235-1243</ispartof><rights>2000 British Pharmacological Society</rights><rights>2000 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Mar 2000</rights><rights>Copyright 2000, Nature Publishing Group 2000 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5858-a32934b6260a21de38b39f0182ac601abddce7b7becd5633fd90ff82348023fd3</citedby><cites>FETCH-LOGICAL-c5858-a32934b6260a21de38b39f0182ac601abddce7b7becd5633fd90ff82348023fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1571937/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1571937/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,45553,45554,46387,46811,53769,53771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1297216$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10725273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soldner, Andrea</creatorcontrib><creatorcontrib>Benet, Leslie Z</creatorcontrib><creatorcontrib>Mutschler, Ernst</creatorcontrib><creatorcontrib>Christians, Uwe</creatorcontrib><title>Active transport of the angiotensin‐II antagonist losartan and its main metabolite EXP 3174 across MDCK‐MDR1 and Caco‐2 cell monolayers</title><title>British journal of pharmacology</title><addtitle>Br J Pharmacol</addtitle><description>We studied the functional interaction between transport and metabolism by comparing the transport of losartan and its active metabolite EXP 3174 (EXP) across cell monolayers. Epithelial layers of Caco‐2 cells as well as MDR1, MRP‐1 and MRP‐2 overexpressing cells, in comparison to the respective wildtypes, were used to characterize the transcellular transport of losartan and EXP. Losartan transport in MDCK‐MDR1 and Caco‐2 cells was saturable and energy‐dependent with a significantly greater basolateral‐to‐apical (B/A) than apical‐to‐basolateral (A/B) flux (ratio=31±1 in MDCK‐MDR1 and ratio 4±1 in Caco‐2 cells). The B/A flux of losartan was inhibited by cyclosporine and vinblastine, inhibitors of P‐glycoprotein and MRP. In contrast, no active losartan transport was observed in MRP‐1 or MRP‐2 overexpressing cells. The metabolite was only transported in Caco‐2 cells with a B/A‐to‐A/B ratio of 5±1, while lacking active transport in the MDR1, MRP‐1 or MRP‐2 overexpressing cells. The B/A flux of EXP was significantly inhibited by cyclosporine and vinblastine. In conclusion, losartan is transported by P‐glycoprotein and other intestinal transporters, that do not include MRP‐1 and MRP‐2. In contrast, the carboxylic acid metabolite is not a P‐glycoprotein substrate, but displays considerably higher affinity for other transporters than losartan, that again most probably do not include MRP‐1 and MRP‐2. British Journal of Pharmacology (2000) 129, 1235–1243; doi:10.1038/sj.bjp.0703150</description><subject>2,4-Dinitrophenol - pharmacology</subject><subject>Angiotensin II - antagonists &amp; inhibitors</subject><subject>Angiotensin‐II antagonists</subject><subject>Animals</subject><subject>Anti-Arrhythmia Agents - metabolism</subject><subject>Antihypertensive agents</subject><subject>Antimetabolites - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Biological Transport, Active - drug effects</subject><subject>Caco-2 Cells</subject><subject>Cardiovascular system</subject><subject>Cell Line</subject><subject>Cell physiology</subject><subject>Chromatography, Liquid</subject><subject>Dogs</subject><subject>Energy Metabolism - drug effects</subject><subject>Energy Metabolism - physiology</subject><subject>Epithelium - drug effects</subject><subject>Epithelium - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Imidazoles - metabolism</subject><subject>intestinal drug transporters</subject><subject>Kidney - drug effects</subject><subject>Kidney - metabolism</subject><subject>Kinetics</subject><subject>LLC-PK1 Cells</subject><subject>Losartan - metabolism</subject><subject>Mass Spectrometry</subject><subject>MDCK‐MDR1 cells</subject><subject>Medical sciences</subject><subject>Membrane and intracellular transports</subject><subject>Molecular and cellular biology</subject><subject>Pharmacology. Drug treatments</subject><subject>P‐glycoprotein</subject><subject>Swine</subject><subject>Temperature</subject><subject>Tetrazoles - metabolism</subject><issn>0007-1188</issn><issn>1476-5381</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkcFuEzEQhlcIREPhyhFZiAOXDR47u3YuSCUtNKIVFQKJmzXr9aZe7dqp7RTlxgsg8Yw8CW4TQeHCyRrPN7_9z18UT4FOgXL5KvbTpl9PqaAcKnqvmMBM1GXFJdwvJpRSUQJIeVA8irGnNDdF9bA4ACpYxQSfFN-PdLLXhqSALq59SMR3JF0agm5lfTIuWvfz24_lMl8kXHlnYyKDjxgSunzXEpsiGdE6MpqEjR9sMuTkywXhIGYEdfAxkvPjxfuscn78EW5nFqh9rhnRZhjI6J0fcGtCfFw86HCI5sn-PCw-vz35tDgtzz68Wy6OzkpdyUqWyNmcz5qa1RQZtIbLhs87CpKhrilg07baiEY0RrdVzXnXzmnXScZnkrJc8cPi9U53vWlGk2GX_Q9qHeyIYas8WvV3x9lLtfLXCioBcy6ywMu9QPBXGxOTGm28MYPO-E1UIDOU9y1lRp__g_Z-E1y2pxgIkFRSyNB0B93uK5ju91-AqpugVexVDlrtg84Dz-46uIPvks3Aiz2AUePQ5Xy1jX84NhcM6ozxHfbVDmb7n1fVm4tTXleS_wIYLsUA</recordid><startdate>200003</startdate><enddate>200003</enddate><creator>Soldner, Andrea</creator><creator>Benet, Leslie Z</creator><creator>Mutschler, Ernst</creator><creator>Christians, Uwe</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U7</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>200003</creationdate><title>Active transport of the angiotensin‐II antagonist losartan and its main metabolite EXP 3174 across MDCK‐MDR1 and Caco‐2 cell monolayers</title><author>Soldner, Andrea ; Benet, Leslie Z ; Mutschler, Ernst ; Christians, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5858-a32934b6260a21de38b39f0182ac601abddce7b7becd5633fd90ff82348023fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>2,4-Dinitrophenol - pharmacology</topic><topic>Angiotensin II - antagonists &amp; inhibitors</topic><topic>Angiotensin‐II antagonists</topic><topic>Animals</topic><topic>Anti-Arrhythmia Agents - metabolism</topic><topic>Antihypertensive agents</topic><topic>Antimetabolites - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Biological Transport, Active - drug effects</topic><topic>Caco-2 Cells</topic><topic>Cardiovascular system</topic><topic>Cell Line</topic><topic>Cell physiology</topic><topic>Chromatography, Liquid</topic><topic>Dogs</topic><topic>Energy Metabolism - drug effects</topic><topic>Energy Metabolism - physiology</topic><topic>Epithelium - drug effects</topic><topic>Epithelium - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Imidazoles - metabolism</topic><topic>intestinal drug transporters</topic><topic>Kidney - drug effects</topic><topic>Kidney - metabolism</topic><topic>Kinetics</topic><topic>LLC-PK1 Cells</topic><topic>Losartan - metabolism</topic><topic>Mass Spectrometry</topic><topic>MDCK‐MDR1 cells</topic><topic>Medical sciences</topic><topic>Membrane and intracellular transports</topic><topic>Molecular and cellular biology</topic><topic>Pharmacology. Drug treatments</topic><topic>P‐glycoprotein</topic><topic>Swine</topic><topic>Temperature</topic><topic>Tetrazoles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soldner, Andrea</creatorcontrib><creatorcontrib>Benet, Leslie Z</creatorcontrib><creatorcontrib>Mutschler, Ernst</creatorcontrib><creatorcontrib>Christians, Uwe</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soldner, Andrea</au><au>Benet, Leslie Z</au><au>Mutschler, Ernst</au><au>Christians, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active transport of the angiotensin‐II antagonist losartan and its main metabolite EXP 3174 across MDCK‐MDR1 and Caco‐2 cell monolayers</atitle><jtitle>British journal of pharmacology</jtitle><addtitle>Br J Pharmacol</addtitle><date>2000-03</date><risdate>2000</risdate><volume>129</volume><issue>6</issue><spage>1235</spage><epage>1243</epage><pages>1235-1243</pages><issn>0007-1188</issn><eissn>1476-5381</eissn><coden>BJPCBM</coden><abstract>We studied the functional interaction between transport and metabolism by comparing the transport of losartan and its active metabolite EXP 3174 (EXP) across cell monolayers. Epithelial layers of Caco‐2 cells as well as MDR1, MRP‐1 and MRP‐2 overexpressing cells, in comparison to the respective wildtypes, were used to characterize the transcellular transport of losartan and EXP. Losartan transport in MDCK‐MDR1 and Caco‐2 cells was saturable and energy‐dependent with a significantly greater basolateral‐to‐apical (B/A) than apical‐to‐basolateral (A/B) flux (ratio=31±1 in MDCK‐MDR1 and ratio 4±1 in Caco‐2 cells). The B/A flux of losartan was inhibited by cyclosporine and vinblastine, inhibitors of P‐glycoprotein and MRP. In contrast, no active losartan transport was observed in MRP‐1 or MRP‐2 overexpressing cells. The metabolite was only transported in Caco‐2 cells with a B/A‐to‐A/B ratio of 5±1, while lacking active transport in the MDR1, MRP‐1 or MRP‐2 overexpressing cells. The B/A flux of EXP was significantly inhibited by cyclosporine and vinblastine. In conclusion, losartan is transported by P‐glycoprotein and other intestinal transporters, that do not include MRP‐1 and MRP‐2. In contrast, the carboxylic acid metabolite is not a P‐glycoprotein substrate, but displays considerably higher affinity for other transporters than losartan, that again most probably do not include MRP‐1 and MRP‐2. British Journal of Pharmacology (2000) 129, 1235–1243; doi:10.1038/sj.bjp.0703150</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>10725273</pmid><doi>10.1038/sj.bjp.0703150</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1188
ispartof British journal of pharmacology, 2000-03, Vol.129 (6), p.1235-1243
issn 0007-1188
1476-5381
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1571937
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; PubMed Central; Alma/SFX Local Collection
subjects 2,4-Dinitrophenol - pharmacology
Angiotensin II - antagonists & inhibitors
Angiotensin‐II antagonists
Animals
Anti-Arrhythmia Agents - metabolism
Antihypertensive agents
Antimetabolites - pharmacology
Biological and medical sciences
Biological Transport, Active - drug effects
Caco-2 Cells
Cardiovascular system
Cell Line
Cell physiology
Chromatography, Liquid
Dogs
Energy Metabolism - drug effects
Energy Metabolism - physiology
Epithelium - drug effects
Epithelium - metabolism
Fundamental and applied biological sciences. Psychology
Humans
Imidazoles - metabolism
intestinal drug transporters
Kidney - drug effects
Kidney - metabolism
Kinetics
LLC-PK1 Cells
Losartan - metabolism
Mass Spectrometry
MDCK‐MDR1 cells
Medical sciences
Membrane and intracellular transports
Molecular and cellular biology
Pharmacology. Drug treatments
P‐glycoprotein
Swine
Temperature
Tetrazoles - metabolism
title Active transport of the angiotensin‐II antagonist losartan and its main metabolite EXP 3174 across MDCK‐MDR1 and Caco‐2 cell monolayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20transport%20of%20the%20angiotensin%E2%80%90II%20antagonist%20losartan%20and%20its%20main%20metabolite%20EXP%203174%20across%20MDCK%E2%80%90MDR1%20and%20Caco%E2%80%902%20cell%20monolayers&rft.jtitle=British%20journal%20of%20pharmacology&rft.au=Soldner,%20Andrea&rft.date=2000-03&rft.volume=129&rft.issue=6&rft.spage=1235&rft.epage=1243&rft.pages=1235-1243&rft.issn=0007-1188&rft.eissn=1476-5381&rft.coden=BJPCBM&rft_id=info:doi/10.1038/sj.bjp.0703150&rft_dat=%3Cproquest_pubme%3E1837300188%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217180801&rft_id=info:pmid/10725273&rfr_iscdi=true