Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching
The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotoch...
Gespeichert in:
Veröffentlicht in: | The Plant cell 1997-08, Vol.9 (8), p.1369-1380 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1380 |
---|---|
container_issue | 8 |
container_start_page | 1369 |
container_title | The Plant cell |
container_volume | 9 |
creator | Niyogi, K.K Bjorkman, O Grossman, A.R |
description | The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotochemical quenching depends primarily on the delta pH that is generated by photosynthetic electron transport, and it is also correlated with the amounts of zeaxanthin and antheraxanthin that are formed from violaxanthin by the operation of the xanthophyll cycle. To perform a genetic dissection of nonphotochemical quenching, we have isolated npq mutants of Chlamydomonas by using a digital video-imaging system. In excessive light, the npq1 mutant is unable to convert violaxanthin to antheraxanthin and zeaxanthin; this reaction is catalyzed by violaxanthin de-epoxidase. The npq2 mutant appears to be defective in zeaxanthin epoxidase activity, because it accumulates zeaxanthin and completely lacks antheraxanthin and violaxanthin under all light conditions. Characterization of these mutants demonstrates that a component of nonphotochemical quenching that develops in vivo in Chlamydomonas depends on the accumulation of zeaxanthin and antheraxanthin via the xanthophyll cycle. However, observation of substantial, rapid, delta pH-dependent nonphotochemical quenching in the npq1 mutant demonstrates that the formation of zeaxanthin and antheraxanthin via violaxanthin de-epoxidase activity is not required for all delta pH-dependent nonphotochemical quenching in this alga. Furthermore, the xanthophyll cycle is not required for survival of Chlamydomonas in excessive light |
doi_str_mv | 10.1105/tpc.9.8.1369 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_157004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3870388</jstor_id><sourcerecordid>3870388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4459-3b26ddc752d80cd1b43a8016888476e541f05ac75a8014659f5e1f3f91fd1f723</originalsourceid><addsrcrecordid>eNpVkT2P1DAQhi0E4o6DjhbkgoKCLJ44ju3iCrTiSzqJAk6is7z-2PjkxIudnMi_x6tdwVGNPfPMzDt6EXoJZANA2Pv5YDZyIzZAe_kIXQKjbdNK8fNxfZOONF3P4AI9K-WOEAIc5FN0AW1LORX9JQrbIepxtWlMky74t57mIR2GNUZsVhMdHpe55goO1k1z8MFZvFvxff0mHEa9D9MeJ4_NEFM-N_q4pOyKcZNx-NdSw1Cp5-iJ17G4F-d4hW4_ffyx_dLcfPv8dfvhpjFdx2RDd21vreGstYIYC7uOakGgF0J0vHesA0-YrvVjtt4mPXPgqZfgLXje0it0fZp7WHajs1XFnHVUh1zV5lUlHdT_lSkMap_uFTBOSFf73577c6riy6zGUG-JUU8uLUWBYJLW3fyIvjuhJqdSsvN_twBRR3NUNUdJJdTRnIq_fqjsH3x2owJvTsBdmVN-OKylhCsqOKFCVOzVCfM6Kb3Poajb7yAlJz2hVdwfPb6iWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859380174</pqid></control><display><type>article</type><title>Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching</title><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Niyogi, K.K ; Bjorkman, O ; Grossman, A.R</creator><creatorcontrib>Niyogi, K.K ; Bjorkman, O ; Grossman, A.R</creatorcontrib><description>The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotochemical quenching depends primarily on the delta pH that is generated by photosynthetic electron transport, and it is also correlated with the amounts of zeaxanthin and antheraxanthin that are formed from violaxanthin by the operation of the xanthophyll cycle. To perform a genetic dissection of nonphotochemical quenching, we have isolated npq mutants of Chlamydomonas by using a digital video-imaging system. In excessive light, the npq1 mutant is unable to convert violaxanthin to antheraxanthin and zeaxanthin; this reaction is catalyzed by violaxanthin de-epoxidase. The npq2 mutant appears to be defective in zeaxanthin epoxidase activity, because it accumulates zeaxanthin and completely lacks antheraxanthin and violaxanthin under all light conditions. Characterization of these mutants demonstrates that a component of nonphotochemical quenching that develops in vivo in Chlamydomonas depends on the accumulation of zeaxanthin and antheraxanthin via the xanthophyll cycle. However, observation of substantial, rapid, delta pH-dependent nonphotochemical quenching in the npq1 mutant demonstrates that the formation of zeaxanthin and antheraxanthin via violaxanthin de-epoxidase activity is not required for all delta pH-dependent nonphotochemical quenching in this alga. Furthermore, the xanthophyll cycle is not required for survival of Chlamydomonas in excessive light</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.9.8.1369</identifier><identifier>PMID: 12237386</identifier><language>eng</language><publisher>United States: American Society of Plant Physiologists</publisher><subject>AUDIOVISUAL AIDS ; Carotenoids ; CHLAMYDOMONAS REINHARDTII ; CHLOROPHYLLE ; CHLOROPHYLLS ; CLOROFILAS ; ELECTRON TRANSFER ; FENOTIPOS ; FLUORESCENCE ; FLUORESCENCIA ; GENE ; GENES ; IMAGENES ; IMAGERIE ; IMAGERY ; Imaging ; INDUCED MUTATION ; LIGHT ; LIGHT INTENSITY ; LUMIERE ; LUZ ; MEDIOS AUDIOVISUALES ; METABOLISM ; METABOLISME ; METABOLISMO ; MOYEN AUDIOVISUEL ; MUTACION INDUCIDA ; MUTANT ; MUTANTES ; MUTANTS ; MUTATION PROVOQUEE ; NONPHOTOCHEMICAL QUENCHING ; OXIDOREDUCTASES ; OXIDOREDUCTIONS ; OXIDORREDUCTASAS ; OXIRREDUCION ; OXYDOREDUCTASE ; OXYDOREDUCTION ; PHENOTYPE ; PHENOTYPES ; Photons ; Photosynthesis ; Plant cells ; Plants ; SEGREGACION ; SEGREGATION ; VIDEO RECORDERS ; VIOLAXANTHIN ; VIOLAXANTHIN DE-EPOXIDASE ; XANTHOPHYLLE ; XANTHOPHYLLS ; XANTOFILAS ; ZEAXANTHIN ; ZEAXANTHRIN EPOXIDASE</subject><ispartof>The Plant cell, 1997-08, Vol.9 (8), p.1369-1380</ispartof><rights>Copyright 1997 American Society of Plant Physiologists</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4459-3b26ddc752d80cd1b43a8016888476e541f05ac75a8014659f5e1f3f91fd1f723</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3870388$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3870388$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12237386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niyogi, K.K</creatorcontrib><creatorcontrib>Bjorkman, O</creatorcontrib><creatorcontrib>Grossman, A.R</creatorcontrib><title>Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotochemical quenching depends primarily on the delta pH that is generated by photosynthetic electron transport, and it is also correlated with the amounts of zeaxanthin and antheraxanthin that are formed from violaxanthin by the operation of the xanthophyll cycle. To perform a genetic dissection of nonphotochemical quenching, we have isolated npq mutants of Chlamydomonas by using a digital video-imaging system. In excessive light, the npq1 mutant is unable to convert violaxanthin to antheraxanthin and zeaxanthin; this reaction is catalyzed by violaxanthin de-epoxidase. The npq2 mutant appears to be defective in zeaxanthin epoxidase activity, because it accumulates zeaxanthin and completely lacks antheraxanthin and violaxanthin under all light conditions. Characterization of these mutants demonstrates that a component of nonphotochemical quenching that develops in vivo in Chlamydomonas depends on the accumulation of zeaxanthin and antheraxanthin via the xanthophyll cycle. However, observation of substantial, rapid, delta pH-dependent nonphotochemical quenching in the npq1 mutant demonstrates that the formation of zeaxanthin and antheraxanthin via violaxanthin de-epoxidase activity is not required for all delta pH-dependent nonphotochemical quenching in this alga. Furthermore, the xanthophyll cycle is not required for survival of Chlamydomonas in excessive light</description><subject>AUDIOVISUAL AIDS</subject><subject>Carotenoids</subject><subject>CHLAMYDOMONAS REINHARDTII</subject><subject>CHLOROPHYLLE</subject><subject>CHLOROPHYLLS</subject><subject>CLOROFILAS</subject><subject>ELECTRON TRANSFER</subject><subject>FENOTIPOS</subject><subject>FLUORESCENCE</subject><subject>FLUORESCENCIA</subject><subject>GENE</subject><subject>GENES</subject><subject>IMAGENES</subject><subject>IMAGERIE</subject><subject>IMAGERY</subject><subject>Imaging</subject><subject>INDUCED MUTATION</subject><subject>LIGHT</subject><subject>LIGHT INTENSITY</subject><subject>LUMIERE</subject><subject>LUZ</subject><subject>MEDIOS AUDIOVISUALES</subject><subject>METABOLISM</subject><subject>METABOLISME</subject><subject>METABOLISMO</subject><subject>MOYEN AUDIOVISUEL</subject><subject>MUTACION INDUCIDA</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>MUTATION PROVOQUEE</subject><subject>NONPHOTOCHEMICAL QUENCHING</subject><subject>OXIDOREDUCTASES</subject><subject>OXIDOREDUCTIONS</subject><subject>OXIDORREDUCTASAS</subject><subject>OXIRREDUCION</subject><subject>OXYDOREDUCTASE</subject><subject>OXYDOREDUCTION</subject><subject>PHENOTYPE</subject><subject>PHENOTYPES</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>Plant cells</subject><subject>Plants</subject><subject>SEGREGACION</subject><subject>SEGREGATION</subject><subject>VIDEO RECORDERS</subject><subject>VIOLAXANTHIN</subject><subject>VIOLAXANTHIN DE-EPOXIDASE</subject><subject>XANTHOPHYLLE</subject><subject>XANTHOPHYLLS</subject><subject>XANTOFILAS</subject><subject>ZEAXANTHIN</subject><subject>ZEAXANTHRIN EPOXIDASE</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpVkT2P1DAQhi0E4o6DjhbkgoKCLJ44ju3iCrTiSzqJAk6is7z-2PjkxIudnMi_x6tdwVGNPfPMzDt6EXoJZANA2Pv5YDZyIzZAe_kIXQKjbdNK8fNxfZOONF3P4AI9K-WOEAIc5FN0AW1LORX9JQrbIepxtWlMky74t57mIR2GNUZsVhMdHpe55goO1k1z8MFZvFvxff0mHEa9D9MeJ4_NEFM-N_q4pOyKcZNx-NdSw1Cp5-iJ17G4F-d4hW4_ffyx_dLcfPv8dfvhpjFdx2RDd21vreGstYIYC7uOakGgF0J0vHesA0-YrvVjtt4mPXPgqZfgLXje0it0fZp7WHajs1XFnHVUh1zV5lUlHdT_lSkMap_uFTBOSFf73577c6riy6zGUG-JUU8uLUWBYJLW3fyIvjuhJqdSsvN_twBRR3NUNUdJJdTRnIq_fqjsH3x2owJvTsBdmVN-OKylhCsqOKFCVOzVCfM6Kb3Poajb7yAlJz2hVdwfPb6iWQ</recordid><startdate>19970801</startdate><enddate>19970801</enddate><creator>Niyogi, K.K</creator><creator>Bjorkman, O</creator><creator>Grossman, A.R</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19970801</creationdate><title>Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching</title><author>Niyogi, K.K ; Bjorkman, O ; Grossman, A.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4459-3b26ddc752d80cd1b43a8016888476e541f05ac75a8014659f5e1f3f91fd1f723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>AUDIOVISUAL AIDS</topic><topic>Carotenoids</topic><topic>CHLAMYDOMONAS REINHARDTII</topic><topic>CHLOROPHYLLE</topic><topic>CHLOROPHYLLS</topic><topic>CLOROFILAS</topic><topic>ELECTRON TRANSFER</topic><topic>FENOTIPOS</topic><topic>FLUORESCENCE</topic><topic>FLUORESCENCIA</topic><topic>GENE</topic><topic>GENES</topic><topic>IMAGENES</topic><topic>IMAGERIE</topic><topic>IMAGERY</topic><topic>Imaging</topic><topic>INDUCED MUTATION</topic><topic>LIGHT</topic><topic>LIGHT INTENSITY</topic><topic>LUMIERE</topic><topic>LUZ</topic><topic>MEDIOS AUDIOVISUALES</topic><topic>METABOLISM</topic><topic>METABOLISME</topic><topic>METABOLISMO</topic><topic>MOYEN AUDIOVISUEL</topic><topic>MUTACION INDUCIDA</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>MUTATION PROVOQUEE</topic><topic>NONPHOTOCHEMICAL QUENCHING</topic><topic>OXIDOREDUCTASES</topic><topic>OXIDOREDUCTIONS</topic><topic>OXIDORREDUCTASAS</topic><topic>OXIRREDUCION</topic><topic>OXYDOREDUCTASE</topic><topic>OXYDOREDUCTION</topic><topic>PHENOTYPE</topic><topic>PHENOTYPES</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>Plant cells</topic><topic>Plants</topic><topic>SEGREGACION</topic><topic>SEGREGATION</topic><topic>VIDEO RECORDERS</topic><topic>VIOLAXANTHIN</topic><topic>VIOLAXANTHIN DE-EPOXIDASE</topic><topic>XANTHOPHYLLE</topic><topic>XANTHOPHYLLS</topic><topic>XANTOFILAS</topic><topic>ZEAXANTHIN</topic><topic>ZEAXANTHRIN EPOXIDASE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niyogi, K.K</creatorcontrib><creatorcontrib>Bjorkman, O</creatorcontrib><creatorcontrib>Grossman, A.R</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niyogi, K.K</au><au>Bjorkman, O</au><au>Grossman, A.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>1997-08-01</date><risdate>1997</risdate><volume>9</volume><issue>8</issue><spage>1369</spage><epage>1380</epage><pages>1369-1380</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotochemical quenching depends primarily on the delta pH that is generated by photosynthetic electron transport, and it is also correlated with the amounts of zeaxanthin and antheraxanthin that are formed from violaxanthin by the operation of the xanthophyll cycle. To perform a genetic dissection of nonphotochemical quenching, we have isolated npq mutants of Chlamydomonas by using a digital video-imaging system. In excessive light, the npq1 mutant is unable to convert violaxanthin to antheraxanthin and zeaxanthin; this reaction is catalyzed by violaxanthin de-epoxidase. The npq2 mutant appears to be defective in zeaxanthin epoxidase activity, because it accumulates zeaxanthin and completely lacks antheraxanthin and violaxanthin under all light conditions. Characterization of these mutants demonstrates that a component of nonphotochemical quenching that develops in vivo in Chlamydomonas depends on the accumulation of zeaxanthin and antheraxanthin via the xanthophyll cycle. However, observation of substantial, rapid, delta pH-dependent nonphotochemical quenching in the npq1 mutant demonstrates that the formation of zeaxanthin and antheraxanthin via violaxanthin de-epoxidase activity is not required for all delta pH-dependent nonphotochemical quenching in this alga. Furthermore, the xanthophyll cycle is not required for survival of Chlamydomonas in excessive light</abstract><cop>United States</cop><pub>American Society of Plant Physiologists</pub><pmid>12237386</pmid><doi>10.1105/tpc.9.8.1369</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-4651 |
ispartof | The Plant cell, 1997-08, Vol.9 (8), p.1369-1380 |
issn | 1040-4651 1532-298X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_157004 |
source | JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | AUDIOVISUAL AIDS Carotenoids CHLAMYDOMONAS REINHARDTII CHLOROPHYLLE CHLOROPHYLLS CLOROFILAS ELECTRON TRANSFER FENOTIPOS FLUORESCENCE FLUORESCENCIA GENE GENES IMAGENES IMAGERIE IMAGERY Imaging INDUCED MUTATION LIGHT LIGHT INTENSITY LUMIERE LUZ MEDIOS AUDIOVISUALES METABOLISM METABOLISME METABOLISMO MOYEN AUDIOVISUEL MUTACION INDUCIDA MUTANT MUTANTES MUTANTS MUTATION PROVOQUEE NONPHOTOCHEMICAL QUENCHING OXIDOREDUCTASES OXIDOREDUCTIONS OXIDORREDUCTASAS OXIRREDUCION OXYDOREDUCTASE OXYDOREDUCTION PHENOTYPE PHENOTYPES Photons Photosynthesis Plant cells Plants SEGREGACION SEGREGATION VIDEO RECORDERS VIOLAXANTHIN VIOLAXANTHIN DE-EPOXIDASE XANTHOPHYLLE XANTHOPHYLLS XANTOFILAS ZEAXANTHIN ZEAXANTHRIN EPOXIDASE |
title | Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chlamydomonas%20xanthophyll%20cycle%20mutants%20identified%20by%20video%20imaging%20of%20chlorophyll%20fluorescence%20quenching&rft.jtitle=The%20Plant%20cell&rft.au=Niyogi,%20K.K&rft.date=1997-08-01&rft.volume=9&rft.issue=8&rft.spage=1369&rft.epage=1380&rft.pages=1369-1380&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.9.8.1369&rft_dat=%3Cjstor_pubme%3E3870388%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859380174&rft_id=info:pmid/12237386&rft_jstor_id=3870388&rfr_iscdi=true |