Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching

The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotoch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 1997-08, Vol.9 (8), p.1369-1380
Hauptverfasser: Niyogi, K.K, Bjorkman, O, Grossman, A.R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1380
container_issue 8
container_start_page 1369
container_title The Plant cell
container_volume 9
creator Niyogi, K.K
Bjorkman, O
Grossman, A.R
description The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotochemical quenching depends primarily on the delta pH that is generated by photosynthetic electron transport, and it is also correlated with the amounts of zeaxanthin and antheraxanthin that are formed from violaxanthin by the operation of the xanthophyll cycle. To perform a genetic dissection of nonphotochemical quenching, we have isolated npq mutants of Chlamydomonas by using a digital video-imaging system. In excessive light, the npq1 mutant is unable to convert violaxanthin to antheraxanthin and zeaxanthin; this reaction is catalyzed by violaxanthin de-epoxidase. The npq2 mutant appears to be defective in zeaxanthin epoxidase activity, because it accumulates zeaxanthin and completely lacks antheraxanthin and violaxanthin under all light conditions. Characterization of these mutants demonstrates that a component of nonphotochemical quenching that develops in vivo in Chlamydomonas depends on the accumulation of zeaxanthin and antheraxanthin via the xanthophyll cycle. However, observation of substantial, rapid, delta pH-dependent nonphotochemical quenching in the npq1 mutant demonstrates that the formation of zeaxanthin and antheraxanthin via violaxanthin de-epoxidase activity is not required for all delta pH-dependent nonphotochemical quenching in this alga. Furthermore, the xanthophyll cycle is not required for survival of Chlamydomonas in excessive light
doi_str_mv 10.1105/tpc.9.8.1369
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_157004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3870388</jstor_id><sourcerecordid>3870388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4459-3b26ddc752d80cd1b43a8016888476e541f05ac75a8014659f5e1f3f91fd1f723</originalsourceid><addsrcrecordid>eNpVkT2P1DAQhi0E4o6DjhbkgoKCLJ44ju3iCrTiSzqJAk6is7z-2PjkxIudnMi_x6tdwVGNPfPMzDt6EXoJZANA2Pv5YDZyIzZAe_kIXQKjbdNK8fNxfZOONF3P4AI9K-WOEAIc5FN0AW1LORX9JQrbIepxtWlMky74t57mIR2GNUZsVhMdHpe55goO1k1z8MFZvFvxff0mHEa9D9MeJ4_NEFM-N_q4pOyKcZNx-NdSw1Cp5-iJ17G4F-d4hW4_ffyx_dLcfPv8dfvhpjFdx2RDd21vreGstYIYC7uOakGgF0J0vHesA0-YrvVjtt4mPXPgqZfgLXje0it0fZp7WHajs1XFnHVUh1zV5lUlHdT_lSkMap_uFTBOSFf73577c6riy6zGUG-JUU8uLUWBYJLW3fyIvjuhJqdSsvN_twBRR3NUNUdJJdTRnIq_fqjsH3x2owJvTsBdmVN-OKylhCsqOKFCVOzVCfM6Kb3Poajb7yAlJz2hVdwfPb6iWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859380174</pqid></control><display><type>article</type><title>Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching</title><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Niyogi, K.K ; Bjorkman, O ; Grossman, A.R</creator><creatorcontrib>Niyogi, K.K ; Bjorkman, O ; Grossman, A.R</creatorcontrib><description>The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotochemical quenching depends primarily on the delta pH that is generated by photosynthetic electron transport, and it is also correlated with the amounts of zeaxanthin and antheraxanthin that are formed from violaxanthin by the operation of the xanthophyll cycle. To perform a genetic dissection of nonphotochemical quenching, we have isolated npq mutants of Chlamydomonas by using a digital video-imaging system. In excessive light, the npq1 mutant is unable to convert violaxanthin to antheraxanthin and zeaxanthin; this reaction is catalyzed by violaxanthin de-epoxidase. The npq2 mutant appears to be defective in zeaxanthin epoxidase activity, because it accumulates zeaxanthin and completely lacks antheraxanthin and violaxanthin under all light conditions. Characterization of these mutants demonstrates that a component of nonphotochemical quenching that develops in vivo in Chlamydomonas depends on the accumulation of zeaxanthin and antheraxanthin via the xanthophyll cycle. However, observation of substantial, rapid, delta pH-dependent nonphotochemical quenching in the npq1 mutant demonstrates that the formation of zeaxanthin and antheraxanthin via violaxanthin de-epoxidase activity is not required for all delta pH-dependent nonphotochemical quenching in this alga. Furthermore, the xanthophyll cycle is not required for survival of Chlamydomonas in excessive light</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.9.8.1369</identifier><identifier>PMID: 12237386</identifier><language>eng</language><publisher>United States: American Society of Plant Physiologists</publisher><subject>AUDIOVISUAL AIDS ; Carotenoids ; CHLAMYDOMONAS REINHARDTII ; CHLOROPHYLLE ; CHLOROPHYLLS ; CLOROFILAS ; ELECTRON TRANSFER ; FENOTIPOS ; FLUORESCENCE ; FLUORESCENCIA ; GENE ; GENES ; IMAGENES ; IMAGERIE ; IMAGERY ; Imaging ; INDUCED MUTATION ; LIGHT ; LIGHT INTENSITY ; LUMIERE ; LUZ ; MEDIOS AUDIOVISUALES ; METABOLISM ; METABOLISME ; METABOLISMO ; MOYEN AUDIOVISUEL ; MUTACION INDUCIDA ; MUTANT ; MUTANTES ; MUTANTS ; MUTATION PROVOQUEE ; NONPHOTOCHEMICAL QUENCHING ; OXIDOREDUCTASES ; OXIDOREDUCTIONS ; OXIDORREDUCTASAS ; OXIRREDUCION ; OXYDOREDUCTASE ; OXYDOREDUCTION ; PHENOTYPE ; PHENOTYPES ; Photons ; Photosynthesis ; Plant cells ; Plants ; SEGREGACION ; SEGREGATION ; VIDEO RECORDERS ; VIOLAXANTHIN ; VIOLAXANTHIN DE-EPOXIDASE ; XANTHOPHYLLE ; XANTHOPHYLLS ; XANTOFILAS ; ZEAXANTHIN ; ZEAXANTHRIN EPOXIDASE</subject><ispartof>The Plant cell, 1997-08, Vol.9 (8), p.1369-1380</ispartof><rights>Copyright 1997 American Society of Plant Physiologists</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4459-3b26ddc752d80cd1b43a8016888476e541f05ac75a8014659f5e1f3f91fd1f723</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3870388$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3870388$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12237386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niyogi, K.K</creatorcontrib><creatorcontrib>Bjorkman, O</creatorcontrib><creatorcontrib>Grossman, A.R</creatorcontrib><title>Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotochemical quenching depends primarily on the delta pH that is generated by photosynthetic electron transport, and it is also correlated with the amounts of zeaxanthin and antheraxanthin that are formed from violaxanthin by the operation of the xanthophyll cycle. To perform a genetic dissection of nonphotochemical quenching, we have isolated npq mutants of Chlamydomonas by using a digital video-imaging system. In excessive light, the npq1 mutant is unable to convert violaxanthin to antheraxanthin and zeaxanthin; this reaction is catalyzed by violaxanthin de-epoxidase. The npq2 mutant appears to be defective in zeaxanthin epoxidase activity, because it accumulates zeaxanthin and completely lacks antheraxanthin and violaxanthin under all light conditions. Characterization of these mutants demonstrates that a component of nonphotochemical quenching that develops in vivo in Chlamydomonas depends on the accumulation of zeaxanthin and antheraxanthin via the xanthophyll cycle. However, observation of substantial, rapid, delta pH-dependent nonphotochemical quenching in the npq1 mutant demonstrates that the formation of zeaxanthin and antheraxanthin via violaxanthin de-epoxidase activity is not required for all delta pH-dependent nonphotochemical quenching in this alga. Furthermore, the xanthophyll cycle is not required for survival of Chlamydomonas in excessive light</description><subject>AUDIOVISUAL AIDS</subject><subject>Carotenoids</subject><subject>CHLAMYDOMONAS REINHARDTII</subject><subject>CHLOROPHYLLE</subject><subject>CHLOROPHYLLS</subject><subject>CLOROFILAS</subject><subject>ELECTRON TRANSFER</subject><subject>FENOTIPOS</subject><subject>FLUORESCENCE</subject><subject>FLUORESCENCIA</subject><subject>GENE</subject><subject>GENES</subject><subject>IMAGENES</subject><subject>IMAGERIE</subject><subject>IMAGERY</subject><subject>Imaging</subject><subject>INDUCED MUTATION</subject><subject>LIGHT</subject><subject>LIGHT INTENSITY</subject><subject>LUMIERE</subject><subject>LUZ</subject><subject>MEDIOS AUDIOVISUALES</subject><subject>METABOLISM</subject><subject>METABOLISME</subject><subject>METABOLISMO</subject><subject>MOYEN AUDIOVISUEL</subject><subject>MUTACION INDUCIDA</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>MUTATION PROVOQUEE</subject><subject>NONPHOTOCHEMICAL QUENCHING</subject><subject>OXIDOREDUCTASES</subject><subject>OXIDOREDUCTIONS</subject><subject>OXIDORREDUCTASAS</subject><subject>OXIRREDUCION</subject><subject>OXYDOREDUCTASE</subject><subject>OXYDOREDUCTION</subject><subject>PHENOTYPE</subject><subject>PHENOTYPES</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>Plant cells</subject><subject>Plants</subject><subject>SEGREGACION</subject><subject>SEGREGATION</subject><subject>VIDEO RECORDERS</subject><subject>VIOLAXANTHIN</subject><subject>VIOLAXANTHIN DE-EPOXIDASE</subject><subject>XANTHOPHYLLE</subject><subject>XANTHOPHYLLS</subject><subject>XANTOFILAS</subject><subject>ZEAXANTHIN</subject><subject>ZEAXANTHRIN EPOXIDASE</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpVkT2P1DAQhi0E4o6DjhbkgoKCLJ44ju3iCrTiSzqJAk6is7z-2PjkxIudnMi_x6tdwVGNPfPMzDt6EXoJZANA2Pv5YDZyIzZAe_kIXQKjbdNK8fNxfZOONF3P4AI9K-WOEAIc5FN0AW1LORX9JQrbIepxtWlMky74t57mIR2GNUZsVhMdHpe55goO1k1z8MFZvFvxff0mHEa9D9MeJ4_NEFM-N_q4pOyKcZNx-NdSw1Cp5-iJ17G4F-d4hW4_ffyx_dLcfPv8dfvhpjFdx2RDd21vreGstYIYC7uOakGgF0J0vHesA0-YrvVjtt4mPXPgqZfgLXje0it0fZp7WHajs1XFnHVUh1zV5lUlHdT_lSkMap_uFTBOSFf73577c6riy6zGUG-JUU8uLUWBYJLW3fyIvjuhJqdSsvN_twBRR3NUNUdJJdTRnIq_fqjsH3x2owJvTsBdmVN-OKylhCsqOKFCVOzVCfM6Kb3Poajb7yAlJz2hVdwfPb6iWQ</recordid><startdate>19970801</startdate><enddate>19970801</enddate><creator>Niyogi, K.K</creator><creator>Bjorkman, O</creator><creator>Grossman, A.R</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19970801</creationdate><title>Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching</title><author>Niyogi, K.K ; Bjorkman, O ; Grossman, A.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4459-3b26ddc752d80cd1b43a8016888476e541f05ac75a8014659f5e1f3f91fd1f723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>AUDIOVISUAL AIDS</topic><topic>Carotenoids</topic><topic>CHLAMYDOMONAS REINHARDTII</topic><topic>CHLOROPHYLLE</topic><topic>CHLOROPHYLLS</topic><topic>CLOROFILAS</topic><topic>ELECTRON TRANSFER</topic><topic>FENOTIPOS</topic><topic>FLUORESCENCE</topic><topic>FLUORESCENCIA</topic><topic>GENE</topic><topic>GENES</topic><topic>IMAGENES</topic><topic>IMAGERIE</topic><topic>IMAGERY</topic><topic>Imaging</topic><topic>INDUCED MUTATION</topic><topic>LIGHT</topic><topic>LIGHT INTENSITY</topic><topic>LUMIERE</topic><topic>LUZ</topic><topic>MEDIOS AUDIOVISUALES</topic><topic>METABOLISM</topic><topic>METABOLISME</topic><topic>METABOLISMO</topic><topic>MOYEN AUDIOVISUEL</topic><topic>MUTACION INDUCIDA</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>MUTATION PROVOQUEE</topic><topic>NONPHOTOCHEMICAL QUENCHING</topic><topic>OXIDOREDUCTASES</topic><topic>OXIDOREDUCTIONS</topic><topic>OXIDORREDUCTASAS</topic><topic>OXIRREDUCION</topic><topic>OXYDOREDUCTASE</topic><topic>OXYDOREDUCTION</topic><topic>PHENOTYPE</topic><topic>PHENOTYPES</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>Plant cells</topic><topic>Plants</topic><topic>SEGREGACION</topic><topic>SEGREGATION</topic><topic>VIDEO RECORDERS</topic><topic>VIOLAXANTHIN</topic><topic>VIOLAXANTHIN DE-EPOXIDASE</topic><topic>XANTHOPHYLLE</topic><topic>XANTHOPHYLLS</topic><topic>XANTOFILAS</topic><topic>ZEAXANTHIN</topic><topic>ZEAXANTHRIN EPOXIDASE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niyogi, K.K</creatorcontrib><creatorcontrib>Bjorkman, O</creatorcontrib><creatorcontrib>Grossman, A.R</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niyogi, K.K</au><au>Bjorkman, O</au><au>Grossman, A.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>1997-08-01</date><risdate>1997</risdate><volume>9</volume><issue>8</issue><spage>1369</spage><epage>1380</epage><pages>1369-1380</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotochemical quenching depends primarily on the delta pH that is generated by photosynthetic electron transport, and it is also correlated with the amounts of zeaxanthin and antheraxanthin that are formed from violaxanthin by the operation of the xanthophyll cycle. To perform a genetic dissection of nonphotochemical quenching, we have isolated npq mutants of Chlamydomonas by using a digital video-imaging system. In excessive light, the npq1 mutant is unable to convert violaxanthin to antheraxanthin and zeaxanthin; this reaction is catalyzed by violaxanthin de-epoxidase. The npq2 mutant appears to be defective in zeaxanthin epoxidase activity, because it accumulates zeaxanthin and completely lacks antheraxanthin and violaxanthin under all light conditions. Characterization of these mutants demonstrates that a component of nonphotochemical quenching that develops in vivo in Chlamydomonas depends on the accumulation of zeaxanthin and antheraxanthin via the xanthophyll cycle. However, observation of substantial, rapid, delta pH-dependent nonphotochemical quenching in the npq1 mutant demonstrates that the formation of zeaxanthin and antheraxanthin via violaxanthin de-epoxidase activity is not required for all delta pH-dependent nonphotochemical quenching in this alga. Furthermore, the xanthophyll cycle is not required for survival of Chlamydomonas in excessive light</abstract><cop>United States</cop><pub>American Society of Plant Physiologists</pub><pmid>12237386</pmid><doi>10.1105/tpc.9.8.1369</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 1997-08, Vol.9 (8), p.1369-1380
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_157004
source JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects AUDIOVISUAL AIDS
Carotenoids
CHLAMYDOMONAS REINHARDTII
CHLOROPHYLLE
CHLOROPHYLLS
CLOROFILAS
ELECTRON TRANSFER
FENOTIPOS
FLUORESCENCE
FLUORESCENCIA
GENE
GENES
IMAGENES
IMAGERIE
IMAGERY
Imaging
INDUCED MUTATION
LIGHT
LIGHT INTENSITY
LUMIERE
LUZ
MEDIOS AUDIOVISUALES
METABOLISM
METABOLISME
METABOLISMO
MOYEN AUDIOVISUEL
MUTACION INDUCIDA
MUTANT
MUTANTES
MUTANTS
MUTATION PROVOQUEE
NONPHOTOCHEMICAL QUENCHING
OXIDOREDUCTASES
OXIDOREDUCTIONS
OXIDORREDUCTASAS
OXIRREDUCION
OXYDOREDUCTASE
OXYDOREDUCTION
PHENOTYPE
PHENOTYPES
Photons
Photosynthesis
Plant cells
Plants
SEGREGACION
SEGREGATION
VIDEO RECORDERS
VIOLAXANTHIN
VIOLAXANTHIN DE-EPOXIDASE
XANTHOPHYLLE
XANTHOPHYLLS
XANTOFILAS
ZEAXANTHIN
ZEAXANTHRIN EPOXIDASE
title Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chlamydomonas%20xanthophyll%20cycle%20mutants%20identified%20by%20video%20imaging%20of%20chlorophyll%20fluorescence%20quenching&rft.jtitle=The%20Plant%20cell&rft.au=Niyogi,%20K.K&rft.date=1997-08-01&rft.volume=9&rft.issue=8&rft.spage=1369&rft.epage=1380&rft.pages=1369-1380&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.9.8.1369&rft_dat=%3Cjstor_pubme%3E3870388%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859380174&rft_id=info:pmid/12237386&rft_jstor_id=3870388&rfr_iscdi=true