Unequal Sister Chromatid and Homolog Recombination at a Tandem Duplication of the a1 Locus in Maize

Tandemly arrayed duplicate genes are prevalent. The maize A1-b haplotype is a tandem duplication that consists of the components, alpha and beta. The rate of meiotic unequal recombination at A1-b is ninefold higher when a homolog is present than when it is absent (i.e., hemizygote). When a sequence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2006-08, Vol.173 (4), p.2211-2226
Hauptverfasser: Yandeau-Nelson, Marna D, Xia, Yiji, Li, Jin, Neuffer, M. Gerald, Schnable, Patrick S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2226
container_issue 4
container_start_page 2211
container_title Genetics (Austin)
container_volume 173
creator Yandeau-Nelson, Marna D
Xia, Yiji
Li, Jin
Neuffer, M. Gerald
Schnable, Patrick S
description Tandemly arrayed duplicate genes are prevalent. The maize A1-b haplotype is a tandem duplication that consists of the components, alpha and beta. The rate of meiotic unequal recombination at A1-b is ninefold higher when a homolog is present than when it is absent (i.e., hemizygote). When a sequence heterologous homolog is available, 94% of recombinants (264/281) are generated via recombination with the homolog rather than with the sister chromatid. In addition, 83% (220/264) of homolog recombination events involved alpha rather than beta. These results indicate that: (1) the homolog is the preferred template for unequal recombination and (2) pairing of the duplicated segments with the homolog does not occur randomly but instead favors a particular configuration. The choice of recombination template (i.e., homolog vs. sister chromatid) affects the distribution of recombination breakpoints within a1. Rates of unequal recombination at A1-b are similar to the rate of recombination between nonduplicated a1 alleles. Unequal recombination is therefore common and is likely to be responsible for the generation of genetic variability, even within inbred lines.
doi_str_mv 10.1534/genetics.105.052712
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1569709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19591333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-c93fc7aac21f6c3ab044a858ab77f8a7e217c6a7ea4372a75abd75a9645a021a3</originalsourceid><addsrcrecordid>eNqFktuKFDEQhhtR3HH1CQQJXuhVj6kcu2-EZTysMCLo7nWozqSns3Qns51uB316Iz0ebzYhVVD11Q8p_qJ4CnQNkotXexfc5G1aA5VrKpkGdq9YQS14yRSH-8WKUlCl0hzOikcp3VBKVS2rh8UZKC3z46vCXgd3O2NPvvg0uZFsujEOOPkdwbAjl3GIfdyTz87GofEhN2IgOBEkV7nvBvJmPvTeLvXYkqlzBIFso50T8YF8RP_dPS4etNgn9-SUz4vrd2-vNpfl9tP7D5uLbWklE1Npa95ajWgZtMpybKgQWMkKG63bCrVjoK3KGQXXDLXEZpdDrYREygD5efF60T3MzeB21oVpxN4cRj_g-M1E9ObfTvCd2cevBqSqNa2zwIuTwBhvZ5cmM_hkXd9jcHFORlW6ppXQd4JQyxp4PneDnOWrMvj8P_AmzmPI6zIMBHCpFMsQXyA7xpRG1_7-G1Dz0xPmlydyQZrFE3nq2d9r-TNzMkEGXi5A5_fd0Y_OpAH7PuNgjscjaG6EYQyA_wAoNcJ1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214135662</pqid></control><display><type>article</type><title>Unequal Sister Chromatid and Homolog Recombination at a Tandem Duplication of the a1 Locus in Maize</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Yandeau-Nelson, Marna D ; Xia, Yiji ; Li, Jin ; Neuffer, M. Gerald ; Schnable, Patrick S</creator><creatorcontrib>Yandeau-Nelson, Marna D ; Xia, Yiji ; Li, Jin ; Neuffer, M. Gerald ; Schnable, Patrick S</creatorcontrib><description>Tandemly arrayed duplicate genes are prevalent. The maize A1-b haplotype is a tandem duplication that consists of the components, alpha and beta. The rate of meiotic unequal recombination at A1-b is ninefold higher when a homolog is present than when it is absent (i.e., hemizygote). When a sequence heterologous homolog is available, 94% of recombinants (264/281) are generated via recombination with the homolog rather than with the sister chromatid. In addition, 83% (220/264) of homolog recombination events involved alpha rather than beta. These results indicate that: (1) the homolog is the preferred template for unequal recombination and (2) pairing of the duplicated segments with the homolog does not occur randomly but instead favors a particular configuration. The choice of recombination template (i.e., homolog vs. sister chromatid) affects the distribution of recombination breakpoints within a1. Rates of unequal recombination at A1-b are similar to the rate of recombination between nonduplicated a1 alleles. Unequal recombination is therefore common and is likely to be responsible for the generation of genetic variability, even within inbred lines.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.105.052712</identifier><identifier>PMID: 16751673</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>Base Sequence ; Cell division ; Chromatids - genetics ; Chromosomes, Plant - genetics ; Components ; Copy ; Genes ; Genetics ; Genomics ; Investigations ; Meiosis - genetics ; Molecular Sequence Data ; Mutation ; Plant resistance ; Quantitative Trait Loci - genetics ; Recombination, Genetic ; Ribosomal DNA ; Zea mays ; Zea mays - genetics</subject><ispartof>Genetics (Austin), 2006-08, Vol.173 (4), p.2211-2226</ispartof><rights>Copyright Genetics Society of America Aug 2006</rights><rights>Copyright © 2006 by the Genetics Society of America 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-c93fc7aac21f6c3ab044a858ab77f8a7e217c6a7ea4372a75abd75a9645a021a3</citedby><cites>FETCH-LOGICAL-c524t-c93fc7aac21f6c3ab044a858ab77f8a7e217c6a7ea4372a75abd75a9645a021a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16751673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yandeau-Nelson, Marna D</creatorcontrib><creatorcontrib>Xia, Yiji</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Neuffer, M. Gerald</creatorcontrib><creatorcontrib>Schnable, Patrick S</creatorcontrib><title>Unequal Sister Chromatid and Homolog Recombination at a Tandem Duplication of the a1 Locus in Maize</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Tandemly arrayed duplicate genes are prevalent. The maize A1-b haplotype is a tandem duplication that consists of the components, alpha and beta. The rate of meiotic unequal recombination at A1-b is ninefold higher when a homolog is present than when it is absent (i.e., hemizygote). When a sequence heterologous homolog is available, 94% of recombinants (264/281) are generated via recombination with the homolog rather than with the sister chromatid. In addition, 83% (220/264) of homolog recombination events involved alpha rather than beta. These results indicate that: (1) the homolog is the preferred template for unequal recombination and (2) pairing of the duplicated segments with the homolog does not occur randomly but instead favors a particular configuration. The choice of recombination template (i.e., homolog vs. sister chromatid) affects the distribution of recombination breakpoints within a1. Rates of unequal recombination at A1-b are similar to the rate of recombination between nonduplicated a1 alleles. Unequal recombination is therefore common and is likely to be responsible for the generation of genetic variability, even within inbred lines.</description><subject>Base Sequence</subject><subject>Cell division</subject><subject>Chromatids - genetics</subject><subject>Chromosomes, Plant - genetics</subject><subject>Components</subject><subject>Copy</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Investigations</subject><subject>Meiosis - genetics</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Plant resistance</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Recombination, Genetic</subject><subject>Ribosomal DNA</subject><subject>Zea mays</subject><subject>Zea mays - genetics</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFktuKFDEQhhtR3HH1CQQJXuhVj6kcu2-EZTysMCLo7nWozqSns3Qns51uB316Iz0ebzYhVVD11Q8p_qJ4CnQNkotXexfc5G1aA5VrKpkGdq9YQS14yRSH-8WKUlCl0hzOikcp3VBKVS2rh8UZKC3z46vCXgd3O2NPvvg0uZFsujEOOPkdwbAjl3GIfdyTz87GofEhN2IgOBEkV7nvBvJmPvTeLvXYkqlzBIFso50T8YF8RP_dPS4etNgn9-SUz4vrd2-vNpfl9tP7D5uLbWklE1Npa95ajWgZtMpybKgQWMkKG63bCrVjoK3KGQXXDLXEZpdDrYREygD5efF60T3MzeB21oVpxN4cRj_g-M1E9ObfTvCd2cevBqSqNa2zwIuTwBhvZ5cmM_hkXd9jcHFORlW6ppXQd4JQyxp4PneDnOWrMvj8P_AmzmPI6zIMBHCpFMsQXyA7xpRG1_7-G1Dz0xPmlydyQZrFE3nq2d9r-TNzMkEGXi5A5_fd0Y_OpAH7PuNgjscjaG6EYQyA_wAoNcJ1</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Yandeau-Nelson, Marna D</creator><creator>Xia, Yiji</creator><creator>Li, Jin</creator><creator>Neuffer, M. Gerald</creator><creator>Schnable, Patrick S</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><general>Copyright © 2006 by the Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060801</creationdate><title>Unequal Sister Chromatid and Homolog Recombination at a Tandem Duplication of the a1 Locus in Maize</title><author>Yandeau-Nelson, Marna D ; Xia, Yiji ; Li, Jin ; Neuffer, M. Gerald ; Schnable, Patrick S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-c93fc7aac21f6c3ab044a858ab77f8a7e217c6a7ea4372a75abd75a9645a021a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Base Sequence</topic><topic>Cell division</topic><topic>Chromatids - genetics</topic><topic>Chromosomes, Plant - genetics</topic><topic>Components</topic><topic>Copy</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Investigations</topic><topic>Meiosis - genetics</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Plant resistance</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Recombination, Genetic</topic><topic>Ribosomal DNA</topic><topic>Zea mays</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yandeau-Nelson, Marna D</creatorcontrib><creatorcontrib>Xia, Yiji</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Neuffer, M. Gerald</creatorcontrib><creatorcontrib>Schnable, Patrick S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yandeau-Nelson, Marna D</au><au>Xia, Yiji</au><au>Li, Jin</au><au>Neuffer, M. Gerald</au><au>Schnable, Patrick S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unequal Sister Chromatid and Homolog Recombination at a Tandem Duplication of the a1 Locus in Maize</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>173</volume><issue>4</issue><spage>2211</spage><epage>2226</epage><pages>2211-2226</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Tandemly arrayed duplicate genes are prevalent. The maize A1-b haplotype is a tandem duplication that consists of the components, alpha and beta. The rate of meiotic unequal recombination at A1-b is ninefold higher when a homolog is present than when it is absent (i.e., hemizygote). When a sequence heterologous homolog is available, 94% of recombinants (264/281) are generated via recombination with the homolog rather than with the sister chromatid. In addition, 83% (220/264) of homolog recombination events involved alpha rather than beta. These results indicate that: (1) the homolog is the preferred template for unequal recombination and (2) pairing of the duplicated segments with the homolog does not occur randomly but instead favors a particular configuration. The choice of recombination template (i.e., homolog vs. sister chromatid) affects the distribution of recombination breakpoints within a1. Rates of unequal recombination at A1-b are similar to the rate of recombination between nonduplicated a1 alleles. Unequal recombination is therefore common and is likely to be responsible for the generation of genetic variability, even within inbred lines.</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>16751673</pmid><doi>10.1534/genetics.105.052712</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-6731
ispartof Genetics (Austin), 2006-08, Vol.173 (4), p.2211-2226
issn 0016-6731
1943-2631
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1569709
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Base Sequence
Cell division
Chromatids - genetics
Chromosomes, Plant - genetics
Components
Copy
Genes
Genetics
Genomics
Investigations
Meiosis - genetics
Molecular Sequence Data
Mutation
Plant resistance
Quantitative Trait Loci - genetics
Recombination, Genetic
Ribosomal DNA
Zea mays
Zea mays - genetics
title Unequal Sister Chromatid and Homolog Recombination at a Tandem Duplication of the a1 Locus in Maize
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unequal%20Sister%20Chromatid%20and%20Homolog%20Recombination%20at%20a%20Tandem%20Duplication%20of%20the%20a1%20Locus%20in%20Maize&rft.jtitle=Genetics%20(Austin)&rft.au=Yandeau-Nelson,%20Marna%20D&rft.date=2006-08-01&rft.volume=173&rft.issue=4&rft.spage=2211&rft.epage=2226&rft.pages=2211-2226&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.105.052712&rft_dat=%3Cproquest_pubme%3E19591333%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214135662&rft_id=info:pmid/16751673&rfr_iscdi=true