Unequal Sister Chromatid and Homolog Recombination at a Tandem Duplication of the a1 Locus in Maize
Tandemly arrayed duplicate genes are prevalent. The maize A1-b haplotype is a tandem duplication that consists of the components, alpha and beta. The rate of meiotic unequal recombination at A1-b is ninefold higher when a homolog is present than when it is absent (i.e., hemizygote). When a sequence...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2006-08, Vol.173 (4), p.2211-2226 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2226 |
---|---|
container_issue | 4 |
container_start_page | 2211 |
container_title | Genetics (Austin) |
container_volume | 173 |
creator | Yandeau-Nelson, Marna D Xia, Yiji Li, Jin Neuffer, M. Gerald Schnable, Patrick S |
description | Tandemly arrayed duplicate genes are prevalent. The maize A1-b haplotype is a tandem duplication that consists of the components, alpha and beta. The rate of meiotic unequal recombination at A1-b is ninefold higher when a homolog is present than when it is absent (i.e., hemizygote). When a sequence heterologous homolog is available, 94% of recombinants (264/281) are generated via recombination with the homolog rather than with the sister chromatid. In addition, 83% (220/264) of homolog recombination events involved alpha rather than beta. These results indicate that: (1) the homolog is the preferred template for unequal recombination and (2) pairing of the duplicated segments with the homolog does not occur randomly but instead favors a particular configuration. The choice of recombination template (i.e., homolog vs. sister chromatid) affects the distribution of recombination breakpoints within a1. Rates of unequal recombination at A1-b are similar to the rate of recombination between nonduplicated a1 alleles. Unequal recombination is therefore common and is likely to be responsible for the generation of genetic variability, even within inbred lines. |
doi_str_mv | 10.1534/genetics.105.052712 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1569709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19591333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-c93fc7aac21f6c3ab044a858ab77f8a7e217c6a7ea4372a75abd75a9645a021a3</originalsourceid><addsrcrecordid>eNqFktuKFDEQhhtR3HH1CQQJXuhVj6kcu2-EZTysMCLo7nWozqSns3Qns51uB316Iz0ebzYhVVD11Q8p_qJ4CnQNkotXexfc5G1aA5VrKpkGdq9YQS14yRSH-8WKUlCl0hzOikcp3VBKVS2rh8UZKC3z46vCXgd3O2NPvvg0uZFsujEOOPkdwbAjl3GIfdyTz87GofEhN2IgOBEkV7nvBvJmPvTeLvXYkqlzBIFso50T8YF8RP_dPS4etNgn9-SUz4vrd2-vNpfl9tP7D5uLbWklE1Npa95ajWgZtMpybKgQWMkKG63bCrVjoK3KGQXXDLXEZpdDrYREygD5efF60T3MzeB21oVpxN4cRj_g-M1E9ObfTvCd2cevBqSqNa2zwIuTwBhvZ5cmM_hkXd9jcHFORlW6ppXQd4JQyxp4PneDnOWrMvj8P_AmzmPI6zIMBHCpFMsQXyA7xpRG1_7-G1Dz0xPmlydyQZrFE3nq2d9r-TNzMkEGXi5A5_fd0Y_OpAH7PuNgjscjaG6EYQyA_wAoNcJ1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214135662</pqid></control><display><type>article</type><title>Unequal Sister Chromatid and Homolog Recombination at a Tandem Duplication of the a1 Locus in Maize</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Yandeau-Nelson, Marna D ; Xia, Yiji ; Li, Jin ; Neuffer, M. Gerald ; Schnable, Patrick S</creator><creatorcontrib>Yandeau-Nelson, Marna D ; Xia, Yiji ; Li, Jin ; Neuffer, M. Gerald ; Schnable, Patrick S</creatorcontrib><description>Tandemly arrayed duplicate genes are prevalent. The maize A1-b haplotype is a tandem duplication that consists of the components, alpha and beta. The rate of meiotic unequal recombination at A1-b is ninefold higher when a homolog is present than when it is absent (i.e., hemizygote). When a sequence heterologous homolog is available, 94% of recombinants (264/281) are generated via recombination with the homolog rather than with the sister chromatid. In addition, 83% (220/264) of homolog recombination events involved alpha rather than beta. These results indicate that: (1) the homolog is the preferred template for unequal recombination and (2) pairing of the duplicated segments with the homolog does not occur randomly but instead favors a particular configuration. The choice of recombination template (i.e., homolog vs. sister chromatid) affects the distribution of recombination breakpoints within a1. Rates of unequal recombination at A1-b are similar to the rate of recombination between nonduplicated a1 alleles. Unequal recombination is therefore common and is likely to be responsible for the generation of genetic variability, even within inbred lines.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.105.052712</identifier><identifier>PMID: 16751673</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>Base Sequence ; Cell division ; Chromatids - genetics ; Chromosomes, Plant - genetics ; Components ; Copy ; Genes ; Genetics ; Genomics ; Investigations ; Meiosis - genetics ; Molecular Sequence Data ; Mutation ; Plant resistance ; Quantitative Trait Loci - genetics ; Recombination, Genetic ; Ribosomal DNA ; Zea mays ; Zea mays - genetics</subject><ispartof>Genetics (Austin), 2006-08, Vol.173 (4), p.2211-2226</ispartof><rights>Copyright Genetics Society of America Aug 2006</rights><rights>Copyright © 2006 by the Genetics Society of America 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-c93fc7aac21f6c3ab044a858ab77f8a7e217c6a7ea4372a75abd75a9645a021a3</citedby><cites>FETCH-LOGICAL-c524t-c93fc7aac21f6c3ab044a858ab77f8a7e217c6a7ea4372a75abd75a9645a021a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16751673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yandeau-Nelson, Marna D</creatorcontrib><creatorcontrib>Xia, Yiji</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Neuffer, M. Gerald</creatorcontrib><creatorcontrib>Schnable, Patrick S</creatorcontrib><title>Unequal Sister Chromatid and Homolog Recombination at a Tandem Duplication of the a1 Locus in Maize</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Tandemly arrayed duplicate genes are prevalent. The maize A1-b haplotype is a tandem duplication that consists of the components, alpha and beta. The rate of meiotic unequal recombination at A1-b is ninefold higher when a homolog is present than when it is absent (i.e., hemizygote). When a sequence heterologous homolog is available, 94% of recombinants (264/281) are generated via recombination with the homolog rather than with the sister chromatid. In addition, 83% (220/264) of homolog recombination events involved alpha rather than beta. These results indicate that: (1) the homolog is the preferred template for unequal recombination and (2) pairing of the duplicated segments with the homolog does not occur randomly but instead favors a particular configuration. The choice of recombination template (i.e., homolog vs. sister chromatid) affects the distribution of recombination breakpoints within a1. Rates of unequal recombination at A1-b are similar to the rate of recombination between nonduplicated a1 alleles. Unequal recombination is therefore common and is likely to be responsible for the generation of genetic variability, even within inbred lines.</description><subject>Base Sequence</subject><subject>Cell division</subject><subject>Chromatids - genetics</subject><subject>Chromosomes, Plant - genetics</subject><subject>Components</subject><subject>Copy</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Investigations</subject><subject>Meiosis - genetics</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Plant resistance</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Recombination, Genetic</subject><subject>Ribosomal DNA</subject><subject>Zea mays</subject><subject>Zea mays - genetics</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFktuKFDEQhhtR3HH1CQQJXuhVj6kcu2-EZTysMCLo7nWozqSns3Qns51uB316Iz0ebzYhVVD11Q8p_qJ4CnQNkotXexfc5G1aA5VrKpkGdq9YQS14yRSH-8WKUlCl0hzOikcp3VBKVS2rh8UZKC3z46vCXgd3O2NPvvg0uZFsujEOOPkdwbAjl3GIfdyTz87GofEhN2IgOBEkV7nvBvJmPvTeLvXYkqlzBIFso50T8YF8RP_dPS4etNgn9-SUz4vrd2-vNpfl9tP7D5uLbWklE1Npa95ajWgZtMpybKgQWMkKG63bCrVjoK3KGQXXDLXEZpdDrYREygD5efF60T3MzeB21oVpxN4cRj_g-M1E9ObfTvCd2cevBqSqNa2zwIuTwBhvZ5cmM_hkXd9jcHFORlW6ppXQd4JQyxp4PneDnOWrMvj8P_AmzmPI6zIMBHCpFMsQXyA7xpRG1_7-G1Dz0xPmlydyQZrFE3nq2d9r-TNzMkEGXi5A5_fd0Y_OpAH7PuNgjscjaG6EYQyA_wAoNcJ1</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Yandeau-Nelson, Marna D</creator><creator>Xia, Yiji</creator><creator>Li, Jin</creator><creator>Neuffer, M. Gerald</creator><creator>Schnable, Patrick S</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><general>Copyright © 2006 by the Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060801</creationdate><title>Unequal Sister Chromatid and Homolog Recombination at a Tandem Duplication of the a1 Locus in Maize</title><author>Yandeau-Nelson, Marna D ; Xia, Yiji ; Li, Jin ; Neuffer, M. Gerald ; Schnable, Patrick S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-c93fc7aac21f6c3ab044a858ab77f8a7e217c6a7ea4372a75abd75a9645a021a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Base Sequence</topic><topic>Cell division</topic><topic>Chromatids - genetics</topic><topic>Chromosomes, Plant - genetics</topic><topic>Components</topic><topic>Copy</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Investigations</topic><topic>Meiosis - genetics</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Plant resistance</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Recombination, Genetic</topic><topic>Ribosomal DNA</topic><topic>Zea mays</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yandeau-Nelson, Marna D</creatorcontrib><creatorcontrib>Xia, Yiji</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Neuffer, M. Gerald</creatorcontrib><creatorcontrib>Schnable, Patrick S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yandeau-Nelson, Marna D</au><au>Xia, Yiji</au><au>Li, Jin</au><au>Neuffer, M. Gerald</au><au>Schnable, Patrick S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unequal Sister Chromatid and Homolog Recombination at a Tandem Duplication of the a1 Locus in Maize</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>173</volume><issue>4</issue><spage>2211</spage><epage>2226</epage><pages>2211-2226</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Tandemly arrayed duplicate genes are prevalent. The maize A1-b haplotype is a tandem duplication that consists of the components, alpha and beta. The rate of meiotic unequal recombination at A1-b is ninefold higher when a homolog is present than when it is absent (i.e., hemizygote). When a sequence heterologous homolog is available, 94% of recombinants (264/281) are generated via recombination with the homolog rather than with the sister chromatid. In addition, 83% (220/264) of homolog recombination events involved alpha rather than beta. These results indicate that: (1) the homolog is the preferred template for unequal recombination and (2) pairing of the duplicated segments with the homolog does not occur randomly but instead favors a particular configuration. The choice of recombination template (i.e., homolog vs. sister chromatid) affects the distribution of recombination breakpoints within a1. Rates of unequal recombination at A1-b are similar to the rate of recombination between nonduplicated a1 alleles. Unequal recombination is therefore common and is likely to be responsible for the generation of genetic variability, even within inbred lines.</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>16751673</pmid><doi>10.1534/genetics.105.052712</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-6731 |
ispartof | Genetics (Austin), 2006-08, Vol.173 (4), p.2211-2226 |
issn | 0016-6731 1943-2631 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1569709 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Base Sequence Cell division Chromatids - genetics Chromosomes, Plant - genetics Components Copy Genes Genetics Genomics Investigations Meiosis - genetics Molecular Sequence Data Mutation Plant resistance Quantitative Trait Loci - genetics Recombination, Genetic Ribosomal DNA Zea mays Zea mays - genetics |
title | Unequal Sister Chromatid and Homolog Recombination at a Tandem Duplication of the a1 Locus in Maize |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unequal%20Sister%20Chromatid%20and%20Homolog%20Recombination%20at%20a%20Tandem%20Duplication%20of%20the%20a1%20Locus%20in%20Maize&rft.jtitle=Genetics%20(Austin)&rft.au=Yandeau-Nelson,%20Marna%20D&rft.date=2006-08-01&rft.volume=173&rft.issue=4&rft.spage=2211&rft.epage=2226&rft.pages=2211-2226&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.105.052712&rft_dat=%3Cproquest_pubme%3E19591333%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214135662&rft_id=info:pmid/16751673&rfr_iscdi=true |