CFTR directly mediates nucleotide-regulated glutathione flux
Studies have shown that expression of cystic fibrosis transmembrane conductance regulator (CFTR) is associated with enhanced glutathione (GSH) efflux from airway epithelial cells, implicating a role for CFTR in the control of oxidative stress in the airways. To define the mechanism underlying CFTR‐a...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2003-05, Vol.22 (9), p.1981-1989 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1989 |
---|---|
container_issue | 9 |
container_start_page | 1981 |
container_title | The EMBO journal |
container_volume | 22 |
creator | Bear, Christine E Kogan, Ilana Ramjeesingh, Mohabir Li, Canhui Kidd, Jackie F Wang, Yanchun Leslie, Elaine M Cole, Susan P.C |
description | Studies have shown that expression of cystic fibrosis transmembrane conductance regulator (CFTR) is associated with enhanced glutathione (GSH) efflux from airway epithelial cells, implicating a role for CFTR in the control of oxidative stress in the airways. To define the mechanism underlying CFTR‐associated GSH flux, we studied wild‐type and mutant CFTR proteins expressed in Sf9 membranes, as well as purified and reconstituted CFTR. We show that CFTR‐expressing membrane vesicles mediate nucleotide‐activated GSH flux, which is disrupted in the R347D pore mutant, and in the Walker A K464A and K1250A mutants. Further, we reveal that purified CFTR protein alone directly mediates nucleotide‐dependent GSH flux. Interestingly, although ATP supports GSH flux through CFTR, this activity is enhanced in the presence of the non‐hydrolyzable ATP analog AMP‐PNP. These findings corroborate previous suggestions that CFTR pore properties can vary with the nature of the nucleotide interaction. In conclusion, our data demonstrate that GSH flux is an intrinsic function of CFTR and prompt future examination of the role of this function in airway biology in health and disease. |
doi_str_mv | 10.1093/emboj/cdg194 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_156066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73230185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6034-2c6aa38d0c61e97e4bb9567d868e99ad9a392b28ee3effe0f31ebc10049dcfc23</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EotPCji0oYtEVodd2_JJgAaM-qKYgoaKysxznZpohkxQ7gc6_J0NG0wHxWFny_c65xz6EPKHwkoLhR7jM28WRL-bUZPfIhGYSUgZK3CcTYJKmGdVmj-zHuAAAoRV9SPYoU0xpKSfk1fTk8mNSVAF9V6-SJRaV6zAmTe9rbLuqwDTgvK-HyyKZ133nuuuqbTAp6_72EXlQujri4815QD6dHF9Oz9LZh9N30zez1EvgWcq8dI7rArykaBRmeW6EVIWWGo1xhXHcsJxpRI5liVByirmnAJkpfOkZPyCvR9-bPh8Semy64Gp7E6qlCyvbusr-Ommqaztvv1kqJEg56A83-tB-7TF2dllFj3XtGmz7aBVnHKgW_wWp1mAG0wF8_hu4aPvQDJ9gqRFMqAzWsV-MkA9tjAHLbWIKdt2d_dmdHbsb8Ge7r7yDN2UNgBiB71WNq3-a2eOLt-dKGEFhbZyOujhImjmGnbB_DvJ05BvX9QG3i-78_joHubuvih3ebscufLFScSXs1ftTew5SXM0-n9kL_gNp6tsN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195257402</pqid></control><display><type>article</type><title>CFTR directly mediates nucleotide-regulated glutathione flux</title><source>MEDLINE</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bear, Christine E ; Kogan, Ilana ; Ramjeesingh, Mohabir ; Li, Canhui ; Kidd, Jackie F ; Wang, Yanchun ; Leslie, Elaine M ; Cole, Susan P.C</creator><creatorcontrib>Bear, Christine E ; Kogan, Ilana ; Ramjeesingh, Mohabir ; Li, Canhui ; Kidd, Jackie F ; Wang, Yanchun ; Leslie, Elaine M ; Cole, Susan P.C</creatorcontrib><description>Studies have shown that expression of cystic fibrosis transmembrane conductance regulator (CFTR) is associated with enhanced glutathione (GSH) efflux from airway epithelial cells, implicating a role for CFTR in the control of oxidative stress in the airways. To define the mechanism underlying CFTR‐associated GSH flux, we studied wild‐type and mutant CFTR proteins expressed in Sf9 membranes, as well as purified and reconstituted CFTR. We show that CFTR‐expressing membrane vesicles mediate nucleotide‐activated GSH flux, which is disrupted in the R347D pore mutant, and in the Walker A K464A and K1250A mutants. Further, we reveal that purified CFTR protein alone directly mediates nucleotide‐dependent GSH flux. Interestingly, although ATP supports GSH flux through CFTR, this activity is enhanced in the presence of the non‐hydrolyzable ATP analog AMP‐PNP. These findings corroborate previous suggestions that CFTR pore properties can vary with the nature of the nucleotide interaction. In conclusion, our data demonstrate that GSH flux is an intrinsic function of CFTR and prompt future examination of the role of this function in airway biology in health and disease.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/cdg194</identifier><identifier>PMID: 12727866</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Animals ; ATP ; Biological Transport ; Cell Line ; CFTR ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - physiology ; EMBO20 ; EMBO24 ; Fluctuations ; glutathione ; Glutathione - metabolism ; Oxidative stress ; Proteolipids ; purified protein ; R347D pore mutant ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Spodoptera ; Walker A mutants</subject><ispartof>The EMBO journal, 2003-05, Vol.22 (9), p.1981-1989</ispartof><rights>European Molecular Biology Organization 2003</rights><rights>Copyright © 2003 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) May 01, 2003</rights><rights>Copyright © 2003 European Molecular Biology Organization 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6034-2c6aa38d0c61e97e4bb9567d868e99ad9a392b28ee3effe0f31ebc10049dcfc23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC156066/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC156066/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12727866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bear, Christine E</creatorcontrib><creatorcontrib>Kogan, Ilana</creatorcontrib><creatorcontrib>Ramjeesingh, Mohabir</creatorcontrib><creatorcontrib>Li, Canhui</creatorcontrib><creatorcontrib>Kidd, Jackie F</creatorcontrib><creatorcontrib>Wang, Yanchun</creatorcontrib><creatorcontrib>Leslie, Elaine M</creatorcontrib><creatorcontrib>Cole, Susan P.C</creatorcontrib><title>CFTR directly mediates nucleotide-regulated glutathione flux</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Studies have shown that expression of cystic fibrosis transmembrane conductance regulator (CFTR) is associated with enhanced glutathione (GSH) efflux from airway epithelial cells, implicating a role for CFTR in the control of oxidative stress in the airways. To define the mechanism underlying CFTR‐associated GSH flux, we studied wild‐type and mutant CFTR proteins expressed in Sf9 membranes, as well as purified and reconstituted CFTR. We show that CFTR‐expressing membrane vesicles mediate nucleotide‐activated GSH flux, which is disrupted in the R347D pore mutant, and in the Walker A K464A and K1250A mutants. Further, we reveal that purified CFTR protein alone directly mediates nucleotide‐dependent GSH flux. Interestingly, although ATP supports GSH flux through CFTR, this activity is enhanced in the presence of the non‐hydrolyzable ATP analog AMP‐PNP. These findings corroborate previous suggestions that CFTR pore properties can vary with the nature of the nucleotide interaction. In conclusion, our data demonstrate that GSH flux is an intrinsic function of CFTR and prompt future examination of the role of this function in airway biology in health and disease.</description><subject>Animals</subject><subject>ATP</subject><subject>Biological Transport</subject><subject>Cell Line</subject><subject>CFTR</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - physiology</subject><subject>EMBO20</subject><subject>EMBO24</subject><subject>Fluctuations</subject><subject>glutathione</subject><subject>Glutathione - metabolism</subject><subject>Oxidative stress</subject><subject>Proteolipids</subject><subject>purified protein</subject><subject>R347D pore mutant</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Spodoptera</subject><subject>Walker A mutants</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtv1DAUhS0EotPCji0oYtEVodd2_JJgAaM-qKYgoaKysxznZpohkxQ7gc6_J0NG0wHxWFny_c65xz6EPKHwkoLhR7jM28WRL-bUZPfIhGYSUgZK3CcTYJKmGdVmj-zHuAAAoRV9SPYoU0xpKSfk1fTk8mNSVAF9V6-SJRaV6zAmTe9rbLuqwDTgvK-HyyKZ133nuuuqbTAp6_72EXlQujri4815QD6dHF9Oz9LZh9N30zez1EvgWcq8dI7rArykaBRmeW6EVIWWGo1xhXHcsJxpRI5liVByirmnAJkpfOkZPyCvR9-bPh8Semy64Gp7E6qlCyvbusr-Ommqaztvv1kqJEg56A83-tB-7TF2dllFj3XtGmz7aBVnHKgW_wWp1mAG0wF8_hu4aPvQDJ9gqRFMqAzWsV-MkA9tjAHLbWIKdt2d_dmdHbsb8Ge7r7yDN2UNgBiB71WNq3-a2eOLt-dKGEFhbZyOujhImjmGnbB_DvJ05BvX9QG3i-78_joHubuvih3ebscufLFScSXs1ftTew5SXM0-n9kL_gNp6tsN</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Bear, Christine E</creator><creator>Kogan, Ilana</creator><creator>Ramjeesingh, Mohabir</creator><creator>Li, Canhui</creator><creator>Kidd, Jackie F</creator><creator>Wang, Yanchun</creator><creator>Leslie, Elaine M</creator><creator>Cole, Susan P.C</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030501</creationdate><title>CFTR directly mediates nucleotide-regulated glutathione flux</title><author>Bear, Christine E ; Kogan, Ilana ; Ramjeesingh, Mohabir ; Li, Canhui ; Kidd, Jackie F ; Wang, Yanchun ; Leslie, Elaine M ; Cole, Susan P.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6034-2c6aa38d0c61e97e4bb9567d868e99ad9a392b28ee3effe0f31ebc10049dcfc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>ATP</topic><topic>Biological Transport</topic><topic>Cell Line</topic><topic>CFTR</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - physiology</topic><topic>EMBO20</topic><topic>EMBO24</topic><topic>Fluctuations</topic><topic>glutathione</topic><topic>Glutathione - metabolism</topic><topic>Oxidative stress</topic><topic>Proteolipids</topic><topic>purified protein</topic><topic>R347D pore mutant</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Spodoptera</topic><topic>Walker A mutants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bear, Christine E</creatorcontrib><creatorcontrib>Kogan, Ilana</creatorcontrib><creatorcontrib>Ramjeesingh, Mohabir</creatorcontrib><creatorcontrib>Li, Canhui</creatorcontrib><creatorcontrib>Kidd, Jackie F</creatorcontrib><creatorcontrib>Wang, Yanchun</creatorcontrib><creatorcontrib>Leslie, Elaine M</creatorcontrib><creatorcontrib>Cole, Susan P.C</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bear, Christine E</au><au>Kogan, Ilana</au><au>Ramjeesingh, Mohabir</au><au>Li, Canhui</au><au>Kidd, Jackie F</au><au>Wang, Yanchun</au><au>Leslie, Elaine M</au><au>Cole, Susan P.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFTR directly mediates nucleotide-regulated glutathione flux</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2003-05-01</date><risdate>2003</risdate><volume>22</volume><issue>9</issue><spage>1981</spage><epage>1989</epage><pages>1981-1989</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Studies have shown that expression of cystic fibrosis transmembrane conductance regulator (CFTR) is associated with enhanced glutathione (GSH) efflux from airway epithelial cells, implicating a role for CFTR in the control of oxidative stress in the airways. To define the mechanism underlying CFTR‐associated GSH flux, we studied wild‐type and mutant CFTR proteins expressed in Sf9 membranes, as well as purified and reconstituted CFTR. We show that CFTR‐expressing membrane vesicles mediate nucleotide‐activated GSH flux, which is disrupted in the R347D pore mutant, and in the Walker A K464A and K1250A mutants. Further, we reveal that purified CFTR protein alone directly mediates nucleotide‐dependent GSH flux. Interestingly, although ATP supports GSH flux through CFTR, this activity is enhanced in the presence of the non‐hydrolyzable ATP analog AMP‐PNP. These findings corroborate previous suggestions that CFTR pore properties can vary with the nature of the nucleotide interaction. In conclusion, our data demonstrate that GSH flux is an intrinsic function of CFTR and prompt future examination of the role of this function in airway biology in health and disease.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>12727866</pmid><doi>10.1093/emboj/cdg194</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2003-05, Vol.22 (9), p.1981-1989 |
issn | 0261-4189 1460-2075 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_156066 |
source | MEDLINE; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals ATP Biological Transport Cell Line CFTR Cystic Fibrosis Transmembrane Conductance Regulator - genetics Cystic Fibrosis Transmembrane Conductance Regulator - physiology EMBO20 EMBO24 Fluctuations glutathione Glutathione - metabolism Oxidative stress Proteolipids purified protein R347D pore mutant Recombinant Proteins - genetics Recombinant Proteins - metabolism Spodoptera Walker A mutants |
title | CFTR directly mediates nucleotide-regulated glutathione flux |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A47%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFTR%20directly%20mediates%20nucleotide-regulated%20glutathione%20flux&rft.jtitle=The%20EMBO%20journal&rft.au=Bear,%20Christine%20E&rft.date=2003-05-01&rft.volume=22&rft.issue=9&rft.spage=1981&rft.epage=1989&rft.pages=1981-1989&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/cdg194&rft_dat=%3Cproquest_pubme%3E73230185%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195257402&rft_id=info:pmid/12727866&rfr_iscdi=true |