Information-theoretic identification of predictive SNPs and supervised visualization of genome-wide association studies

The size, dimensionality and the limited range of the data values makes visualization of single nucleotide polymorphism (SNP) datasets challenging. The purpose of this study is to evaluate the usefulness of 3D VizStruct, a novel multi-dimensional data visualization technique for SNP datasets capable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2006-01, Vol.34 (14), p.e101-e101
Hauptverfasser: Bhasi, Kavitha, Zhang, Li, Brazeau, Daniel, Zhang, Aidong, Ramanathan, Murali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e101
container_issue 14
container_start_page e101
container_title Nucleic acids research
container_volume 34
creator Bhasi, Kavitha
Zhang, Li
Brazeau, Daniel
Zhang, Aidong
Ramanathan, Murali
description The size, dimensionality and the limited range of the data values makes visualization of single nucleotide polymorphism (SNP) datasets challenging. The purpose of this study is to evaluate the usefulness of 3D VizStruct, a novel multi-dimensional data visualization technique for SNP datasets capable of identifying informative SNPs in genome-wide association studies. VizStruct is an interactive visualization technique that reduces multi-dimensional data to three dimensions using a combination of the discrete Fourier transform and the Kullback-Leibler divergence. The performance of 3D VizStruct was challenged with several diverse, biologically relevant published datasets including the human lipoprotein lipase (LPL) gene locus, the human Y-chromosome in several populations and a multi-locus genotype dataset of coral samples from four populations. In every case, the SNPs and or polymorphic markers identified by the 3D VizStruct mapping were predictive of the underlying biology.
doi_str_mv 10.1093/nar/gkl520
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1557808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1129673631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-65390cd0ebadbcf28b8daa9a1132163c85ff7a6e04053970a17822b7bb51b53b3</originalsourceid><addsrcrecordid>eNqF0ctu1DAUBmALgehQ2PAAELFggRR6fEucDRKquFSqAKl0bfk6dUnswU6mgqfHkFG5bNjYi_Ppl49_hB5jeIlhoCdR5ZPtl5ETuIM2mHakZUNH7qINUOAtBiaO0INSrgEww5zdR0e4E8PAmNigm7PoU57UHFJs5yuXspuDaYJ1cQ4-mF-DJvlml50NZg5711x8-FQaFW1Tlp3L-1Ccbeq5qDF8v_VbF9Pk2pua1KhSkgnrqMyLDa48RPe8Got7dLiP0eXbN59P37fnH9-dnb4-bw3jYm47TgcwFpxWVhtPhBZWqUFhTAnuqBHc-151DhhU2YPCvSBE91pzrDnV9Bi9WnN3i56cNXWtrEa5y2FS-ZtMKsi_JzFcyW3aS8x5L0DUgOeHgJy-Lq7McgrFuHFU0aWlyE4IQgVh_4V4oLQyXOGzf-B1WnKsvyAJAO-7gUNFL1ZkciolO3_7ZAzyZ-uyti7X1it-8ueSv-mh5gqersCrJNU2hyIvLwhgCjWqLiDoDxPGth4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200576950</pqid></control><display><type>article</type><title>Information-theoretic identification of predictive SNPs and supervised visualization of genome-wide association studies</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bhasi, Kavitha ; Zhang, Li ; Brazeau, Daniel ; Zhang, Aidong ; Ramanathan, Murali</creator><creatorcontrib>Bhasi, Kavitha ; Zhang, Li ; Brazeau, Daniel ; Zhang, Aidong ; Ramanathan, Murali</creatorcontrib><description>The size, dimensionality and the limited range of the data values makes visualization of single nucleotide polymorphism (SNP) datasets challenging. The purpose of this study is to evaluate the usefulness of 3D VizStruct, a novel multi-dimensional data visualization technique for SNP datasets capable of identifying informative SNPs in genome-wide association studies. VizStruct is an interactive visualization technique that reduces multi-dimensional data to three dimensions using a combination of the discrete Fourier transform and the Kullback-Leibler divergence. The performance of 3D VizStruct was challenged with several diverse, biologically relevant published datasets including the human lipoprotein lipase (LPL) gene locus, the human Y-chromosome in several populations and a multi-locus genotype dataset of coral samples from four populations. In every case, the SNPs and or polymorphic markers identified by the 3D VizStruct mapping were predictive of the underlying biology.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkl520</identifier><identifier>PMID: 16899448</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford Publishing Limited (England)</publisher><subject>Animals ; Anthozoa - genetics ; Chromosomes, Human, Y ; Computer Graphics ; Gene Frequency ; Genomics - methods ; Genotype ; Haplotypes ; Humans ; Information Theory ; Linkage Disequilibrium ; Lipoprotein Lipase - genetics ; Male ; Methods Online ; Polymorphism, Single Nucleotide</subject><ispartof>Nucleic acids research, 2006-01, Vol.34 (14), p.e101-e101</ispartof><rights>Copyright Oxford University Press(England) Sep 15, 2006</rights><rights>2006 The Author(s). 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-65390cd0ebadbcf28b8daa9a1132163c85ff7a6e04053970a17822b7bb51b53b3</citedby><cites>FETCH-LOGICAL-c458t-65390cd0ebadbcf28b8daa9a1132163c85ff7a6e04053970a17822b7bb51b53b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557808/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557808/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16899448$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhasi, Kavitha</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Brazeau, Daniel</creatorcontrib><creatorcontrib>Zhang, Aidong</creatorcontrib><creatorcontrib>Ramanathan, Murali</creatorcontrib><title>Information-theoretic identification of predictive SNPs and supervised visualization of genome-wide association studies</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The size, dimensionality and the limited range of the data values makes visualization of single nucleotide polymorphism (SNP) datasets challenging. The purpose of this study is to evaluate the usefulness of 3D VizStruct, a novel multi-dimensional data visualization technique for SNP datasets capable of identifying informative SNPs in genome-wide association studies. VizStruct is an interactive visualization technique that reduces multi-dimensional data to three dimensions using a combination of the discrete Fourier transform and the Kullback-Leibler divergence. The performance of 3D VizStruct was challenged with several diverse, biologically relevant published datasets including the human lipoprotein lipase (LPL) gene locus, the human Y-chromosome in several populations and a multi-locus genotype dataset of coral samples from four populations. In every case, the SNPs and or polymorphic markers identified by the 3D VizStruct mapping were predictive of the underlying biology.</description><subject>Animals</subject><subject>Anthozoa - genetics</subject><subject>Chromosomes, Human, Y</subject><subject>Computer Graphics</subject><subject>Gene Frequency</subject><subject>Genomics - methods</subject><subject>Genotype</subject><subject>Haplotypes</subject><subject>Humans</subject><subject>Information Theory</subject><subject>Linkage Disequilibrium</subject><subject>Lipoprotein Lipase - genetics</subject><subject>Male</subject><subject>Methods Online</subject><subject>Polymorphism, Single Nucleotide</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctu1DAUBmALgehQ2PAAELFggRR6fEucDRKquFSqAKl0bfk6dUnswU6mgqfHkFG5bNjYi_Ppl49_hB5jeIlhoCdR5ZPtl5ETuIM2mHakZUNH7qINUOAtBiaO0INSrgEww5zdR0e4E8PAmNigm7PoU57UHFJs5yuXspuDaYJ1cQ4-mF-DJvlml50NZg5711x8-FQaFW1Tlp3L-1Ccbeq5qDF8v_VbF9Pk2pua1KhSkgnrqMyLDa48RPe8Got7dLiP0eXbN59P37fnH9-dnb4-bw3jYm47TgcwFpxWVhtPhBZWqUFhTAnuqBHc-151DhhU2YPCvSBE91pzrDnV9Bi9WnN3i56cNXWtrEa5y2FS-ZtMKsi_JzFcyW3aS8x5L0DUgOeHgJy-Lq7McgrFuHFU0aWlyE4IQgVh_4V4oLQyXOGzf-B1WnKsvyAJAO-7gUNFL1ZkciolO3_7ZAzyZ-uyti7X1it-8ueSv-mh5gqersCrJNU2hyIvLwhgCjWqLiDoDxPGth4</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Bhasi, Kavitha</creator><creator>Zhang, Li</creator><creator>Brazeau, Daniel</creator><creator>Zhang, Aidong</creator><creator>Ramanathan, Murali</creator><general>Oxford Publishing Limited (England)</general><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060101</creationdate><title>Information-theoretic identification of predictive SNPs and supervised visualization of genome-wide association studies</title><author>Bhasi, Kavitha ; Zhang, Li ; Brazeau, Daniel ; Zhang, Aidong ; Ramanathan, Murali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-65390cd0ebadbcf28b8daa9a1132163c85ff7a6e04053970a17822b7bb51b53b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Anthozoa - genetics</topic><topic>Chromosomes, Human, Y</topic><topic>Computer Graphics</topic><topic>Gene Frequency</topic><topic>Genomics - methods</topic><topic>Genotype</topic><topic>Haplotypes</topic><topic>Humans</topic><topic>Information Theory</topic><topic>Linkage Disequilibrium</topic><topic>Lipoprotein Lipase - genetics</topic><topic>Male</topic><topic>Methods Online</topic><topic>Polymorphism, Single Nucleotide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhasi, Kavitha</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Brazeau, Daniel</creatorcontrib><creatorcontrib>Zhang, Aidong</creatorcontrib><creatorcontrib>Ramanathan, Murali</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhasi, Kavitha</au><au>Zhang, Li</au><au>Brazeau, Daniel</au><au>Zhang, Aidong</au><au>Ramanathan, Murali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information-theoretic identification of predictive SNPs and supervised visualization of genome-wide association studies</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>34</volume><issue>14</issue><spage>e101</spage><epage>e101</epage><pages>e101-e101</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>The size, dimensionality and the limited range of the data values makes visualization of single nucleotide polymorphism (SNP) datasets challenging. The purpose of this study is to evaluate the usefulness of 3D VizStruct, a novel multi-dimensional data visualization technique for SNP datasets capable of identifying informative SNPs in genome-wide association studies. VizStruct is an interactive visualization technique that reduces multi-dimensional data to three dimensions using a combination of the discrete Fourier transform and the Kullback-Leibler divergence. The performance of 3D VizStruct was challenged with several diverse, biologically relevant published datasets including the human lipoprotein lipase (LPL) gene locus, the human Y-chromosome in several populations and a multi-locus genotype dataset of coral samples from four populations. In every case, the SNPs and or polymorphic markers identified by the 3D VizStruct mapping were predictive of the underlying biology.</abstract><cop>England</cop><pub>Oxford Publishing Limited (England)</pub><pmid>16899448</pmid><doi>10.1093/nar/gkl520</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2006-01, Vol.34 (14), p.e101-e101
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1557808
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Anthozoa - genetics
Chromosomes, Human, Y
Computer Graphics
Gene Frequency
Genomics - methods
Genotype
Haplotypes
Humans
Information Theory
Linkage Disequilibrium
Lipoprotein Lipase - genetics
Male
Methods Online
Polymorphism, Single Nucleotide
title Information-theoretic identification of predictive SNPs and supervised visualization of genome-wide association studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information-theoretic%20identification%20of%20predictive%20SNPs%20and%20supervised%20visualization%20of%20genome-wide%20association%20studies&rft.jtitle=Nucleic%20acids%20research&rft.au=Bhasi,%20Kavitha&rft.date=2006-01-01&rft.volume=34&rft.issue=14&rft.spage=e101&rft.epage=e101&rft.pages=e101-e101&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkl520&rft_dat=%3Cproquest_pubme%3E1129673631%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200576950&rft_id=info:pmid/16899448&rfr_iscdi=true