Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: Implications for ionic homeostasis and potassium siphoning

The subcellular distributions and co-associations of the gap junction-forming proteins connexin47 and connexin32 were investigated in oligodendrocytes of adult mouse and rat CNS. By confocal immunofluorescence light microscopy, abundant connexin47 was co-localized with astrocytic connexin43 on oligo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2005, Vol.136 (1), p.65-86
Hauptverfasser: Kamasawa, N., Sik, A., Morita, M., Yasumura, T., Davidson, K.G.V., Nagy, J.I., Rash, J.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue 1
container_start_page 65
container_title Neuroscience
container_volume 136
creator Kamasawa, N.
Sik, A.
Morita, M.
Yasumura, T.
Davidson, K.G.V.
Nagy, J.I.
Rash, J.E.
description The subcellular distributions and co-associations of the gap junction-forming proteins connexin47 and connexin32 were investigated in oligodendrocytes of adult mouse and rat CNS. By confocal immunofluorescence light microscopy, abundant connexin47 was co-localized with astrocytic connexin43 on oligodendrocyte somata, and along myelinated fibers, whereas connexin32 without connexin47 was co-localized with contactin-associated protein (caspr) in paranodes. By thin-section transmission electron microscopy, connexin47 immunolabeling was on the oligodendrocyte side of gap junctions between oligodendrocyte somata and astrocytes. By freeze-fracture replica immunogold labeling, large gap junctions between oligodendrocyte somata and astrocyte processes contained much more connexin47 than connexin32. Along surfaces of internodal myelin, connexin47 was several times as abundant as connexin32, and in the smallest gap junctions, often occurred without connexin32. In contrast, connexin32 was localized without connexin47 in newly-described autologous gap junctions in Schmidt-Lanterman incisures and between paranodal loops bordering nodes of Ranvier. Thus, connexin47 in adult rodent CNS is the most abundant connexin in most heterologous oligodendrocyte-to-astrocyte gap junctions, whereas connexin32 is the predominant if not sole connexin in autologous (“reflexive”) oligodendrocyte gap junctions. These results clarify the locations and connexin compositions of heterologous and autologous oligodendrocyte gap junctions, identify autologous gap junctions at paranodes as potential sites for modulating paranodal electrical properties, and reveal connexin47-containing and connexin32-containing gap junctions as conduits for long-distance intracellular and intercellular movement of ions and associated osmotic water. The autologous gap junctions may regulate paranodal electrical properties during saltatory conduction. Acting in series and in parallel, autologous and heterologous oligodendrocyte gap junctions provide essential pathways for intra- and intercellular ionic homeostasis.
doi_str_mv 10.1016/j.neuroscience.2005.08.027
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1550704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306452205008973</els_id><sourcerecordid>S0306452205008973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-dd1cf2e1d6a610cdee489f8a654b630b6ff9c608b7260073f94039cf98af42613</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEokPhFZCFxK4Jdn6cpAskNPxVGokFsLbu2NcTjxI7sp2KeT5eDJcMtOzwxrbud8-x78myV4wWjDL-5lhYXLwL0qCVWJSUNgXtClq2j7IN69oqb5u6fpxtaEV5XjdleZE9C-FI02rq6ml2wXiZan27yX5unbX4w9i8bglYReSfe1USY8kBZnJcrIzG2UCcJm40B6fQKu_kKSIJboIIV2Q64Zj4MCDEIVyRGTxYp2Ako3Nz-K39VQ6TUTHfgY3oJ7DJQZqweAzX5GaaRyNhNdLOk3QwkgxuQhciBLNqzC6dg1kmEsw8JMQenmdPNIwBX5z3y-z7xw_ftp_z3ZdPN9t3u1w2HYu5UkzqEpniwBmVCrHuet0Bb-o9r-iea91LTrt9W3JK20r3Na16qfsOdF1yVl1mb1fdedlPqCTa6GEUszcT-JNwYMS_FWsGcXC3gjUNbWmdBK5XAZnSCx71315GxV204igeRivuohW0Eyna1Pzyoft96znLBLw-AxAkjDrNPw33nkvfaikrE_d-5TDN6tagF2c7ZTzKKJQz__OeXxH_0Eo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: Implications for ionic homeostasis and potassium siphoning</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kamasawa, N. ; Sik, A. ; Morita, M. ; Yasumura, T. ; Davidson, K.G.V. ; Nagy, J.I. ; Rash, J.E.</creator><creatorcontrib>Kamasawa, N. ; Sik, A. ; Morita, M. ; Yasumura, T. ; Davidson, K.G.V. ; Nagy, J.I. ; Rash, J.E.</creatorcontrib><description>The subcellular distributions and co-associations of the gap junction-forming proteins connexin47 and connexin32 were investigated in oligodendrocytes of adult mouse and rat CNS. By confocal immunofluorescence light microscopy, abundant connexin47 was co-localized with astrocytic connexin43 on oligodendrocyte somata, and along myelinated fibers, whereas connexin32 without connexin47 was co-localized with contactin-associated protein (caspr) in paranodes. By thin-section transmission electron microscopy, connexin47 immunolabeling was on the oligodendrocyte side of gap junctions between oligodendrocyte somata and astrocytes. By freeze-fracture replica immunogold labeling, large gap junctions between oligodendrocyte somata and astrocyte processes contained much more connexin47 than connexin32. Along surfaces of internodal myelin, connexin47 was several times as abundant as connexin32, and in the smallest gap junctions, often occurred without connexin32. In contrast, connexin32 was localized without connexin47 in newly-described autologous gap junctions in Schmidt-Lanterman incisures and between paranodal loops bordering nodes of Ranvier. Thus, connexin47 in adult rodent CNS is the most abundant connexin in most heterologous oligodendrocyte-to-astrocyte gap junctions, whereas connexin32 is the predominant if not sole connexin in autologous (“reflexive”) oligodendrocyte gap junctions. These results clarify the locations and connexin compositions of heterologous and autologous oligodendrocyte gap junctions, identify autologous gap junctions at paranodes as potential sites for modulating paranodal electrical properties, and reveal connexin47-containing and connexin32-containing gap junctions as conduits for long-distance intracellular and intercellular movement of ions and associated osmotic water. The autologous gap junctions may regulate paranodal electrical properties during saltatory conduction. Acting in series and in parallel, autologous and heterologous oligodendrocyte gap junctions provide essential pathways for intra- and intercellular ionic homeostasis.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/j.neuroscience.2005.08.027</identifier><identifier>PMID: 16203097</identifier><identifier>CODEN: NRSCDN</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Cell Adhesion Molecules, Neuronal - metabolism ; Cell interactions, adhesion ; Central Nervous System - cytology ; Central Nervous System - metabolism ; Central Nervous System - ultrastructure ; confocal microscopy ; Connexin 43 - metabolism ; Connexins - metabolism ; Cytoplasm - metabolism ; Female ; Fluorescent Antibody Technique ; freeze fracture ; Freeze Fracturing ; Fundamental and applied biological sciences. Psychology ; Gap Junction beta-1 Protein ; Gap Junctions - metabolism ; Gap Junctions - ultrastructure ; Homeostasis ; immunofluorescence ; immunogold labeling ; Immunohistochemistry ; Ions ; Male ; Mice ; Mice, Inbred Strains ; Microscopy, Electron ; Molecular and cellular biology ; Myelin Sheath - metabolism ; Myelin Sheath - ultrastructure ; Oligodendroglia - metabolism ; Oligodendroglia - ultrastructure ; Potassium - metabolism ; Ranvier's Nodes - metabolism ; Rats ; Rats, Sprague-Dawley ; rodent ; Subcellular Fractions - metabolism ; Tissue Distribution</subject><ispartof>Neuroscience, 2005, Vol.136 (1), p.65-86</ispartof><rights>2005 IBRO</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-dd1cf2e1d6a610cdee489f8a654b630b6ff9c608b7260073f94039cf98af42613</citedby><cites>FETCH-LOGICAL-c581t-dd1cf2e1d6a610cdee489f8a654b630b6ff9c608b7260073f94039cf98af42613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0306452205008973$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17267012$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16203097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamasawa, N.</creatorcontrib><creatorcontrib>Sik, A.</creatorcontrib><creatorcontrib>Morita, M.</creatorcontrib><creatorcontrib>Yasumura, T.</creatorcontrib><creatorcontrib>Davidson, K.G.V.</creatorcontrib><creatorcontrib>Nagy, J.I.</creatorcontrib><creatorcontrib>Rash, J.E.</creatorcontrib><title>Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: Implications for ionic homeostasis and potassium siphoning</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>The subcellular distributions and co-associations of the gap junction-forming proteins connexin47 and connexin32 were investigated in oligodendrocytes of adult mouse and rat CNS. By confocal immunofluorescence light microscopy, abundant connexin47 was co-localized with astrocytic connexin43 on oligodendrocyte somata, and along myelinated fibers, whereas connexin32 without connexin47 was co-localized with contactin-associated protein (caspr) in paranodes. By thin-section transmission electron microscopy, connexin47 immunolabeling was on the oligodendrocyte side of gap junctions between oligodendrocyte somata and astrocytes. By freeze-fracture replica immunogold labeling, large gap junctions between oligodendrocyte somata and astrocyte processes contained much more connexin47 than connexin32. Along surfaces of internodal myelin, connexin47 was several times as abundant as connexin32, and in the smallest gap junctions, often occurred without connexin32. In contrast, connexin32 was localized without connexin47 in newly-described autologous gap junctions in Schmidt-Lanterman incisures and between paranodal loops bordering nodes of Ranvier. Thus, connexin47 in adult rodent CNS is the most abundant connexin in most heterologous oligodendrocyte-to-astrocyte gap junctions, whereas connexin32 is the predominant if not sole connexin in autologous (“reflexive”) oligodendrocyte gap junctions. These results clarify the locations and connexin compositions of heterologous and autologous oligodendrocyte gap junctions, identify autologous gap junctions at paranodes as potential sites for modulating paranodal electrical properties, and reveal connexin47-containing and connexin32-containing gap junctions as conduits for long-distance intracellular and intercellular movement of ions and associated osmotic water. The autologous gap junctions may regulate paranodal electrical properties during saltatory conduction. Acting in series and in parallel, autologous and heterologous oligodendrocyte gap junctions provide essential pathways for intra- and intercellular ionic homeostasis.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Adhesion Molecules, Neuronal - metabolism</subject><subject>Cell interactions, adhesion</subject><subject>Central Nervous System - cytology</subject><subject>Central Nervous System - metabolism</subject><subject>Central Nervous System - ultrastructure</subject><subject>confocal microscopy</subject><subject>Connexin 43 - metabolism</subject><subject>Connexins - metabolism</subject><subject>Cytoplasm - metabolism</subject><subject>Female</subject><subject>Fluorescent Antibody Technique</subject><subject>freeze fracture</subject><subject>Freeze Fracturing</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gap Junction beta-1 Protein</subject><subject>Gap Junctions - metabolism</subject><subject>Gap Junctions - ultrastructure</subject><subject>Homeostasis</subject><subject>immunofluorescence</subject><subject>immunogold labeling</subject><subject>Immunohistochemistry</subject><subject>Ions</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred Strains</subject><subject>Microscopy, Electron</subject><subject>Molecular and cellular biology</subject><subject>Myelin Sheath - metabolism</subject><subject>Myelin Sheath - ultrastructure</subject><subject>Oligodendroglia - metabolism</subject><subject>Oligodendroglia - ultrastructure</subject><subject>Potassium - metabolism</subject><subject>Ranvier's Nodes - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>rodent</subject><subject>Subcellular Fractions - metabolism</subject><subject>Tissue Distribution</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhSMEokPhFZCFxK4Jdn6cpAskNPxVGokFsLbu2NcTjxI7sp2KeT5eDJcMtOzwxrbud8-x78myV4wWjDL-5lhYXLwL0qCVWJSUNgXtClq2j7IN69oqb5u6fpxtaEV5XjdleZE9C-FI02rq6ml2wXiZan27yX5unbX4w9i8bglYReSfe1USY8kBZnJcrIzG2UCcJm40B6fQKu_kKSIJboIIV2Q64Zj4MCDEIVyRGTxYp2Ako3Nz-K39VQ6TUTHfgY3oJ7DJQZqweAzX5GaaRyNhNdLOk3QwkgxuQhciBLNqzC6dg1kmEsw8JMQenmdPNIwBX5z3y-z7xw_ftp_z3ZdPN9t3u1w2HYu5UkzqEpniwBmVCrHuet0Bb-o9r-iea91LTrt9W3JK20r3Na16qfsOdF1yVl1mb1fdedlPqCTa6GEUszcT-JNwYMS_FWsGcXC3gjUNbWmdBK5XAZnSCx71315GxV204igeRivuohW0Eyna1Pzyoft96znLBLw-AxAkjDrNPw33nkvfaikrE_d-5TDN6tagF2c7ZTzKKJQz__OeXxH_0Eo</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Kamasawa, N.</creator><creator>Sik, A.</creator><creator>Morita, M.</creator><creator>Yasumura, T.</creator><creator>Davidson, K.G.V.</creator><creator>Nagy, J.I.</creator><creator>Rash, J.E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>2005</creationdate><title>Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: Implications for ionic homeostasis and potassium siphoning</title><author>Kamasawa, N. ; Sik, A. ; Morita, M. ; Yasumura, T. ; Davidson, K.G.V. ; Nagy, J.I. ; Rash, J.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-dd1cf2e1d6a610cdee489f8a654b630b6ff9c608b7260073f94039cf98af42613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Adhesion Molecules, Neuronal - metabolism</topic><topic>Cell interactions, adhesion</topic><topic>Central Nervous System - cytology</topic><topic>Central Nervous System - metabolism</topic><topic>Central Nervous System - ultrastructure</topic><topic>confocal microscopy</topic><topic>Connexin 43 - metabolism</topic><topic>Connexins - metabolism</topic><topic>Cytoplasm - metabolism</topic><topic>Female</topic><topic>Fluorescent Antibody Technique</topic><topic>freeze fracture</topic><topic>Freeze Fracturing</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gap Junction beta-1 Protein</topic><topic>Gap Junctions - metabolism</topic><topic>Gap Junctions - ultrastructure</topic><topic>Homeostasis</topic><topic>immunofluorescence</topic><topic>immunogold labeling</topic><topic>Immunohistochemistry</topic><topic>Ions</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred Strains</topic><topic>Microscopy, Electron</topic><topic>Molecular and cellular biology</topic><topic>Myelin Sheath - metabolism</topic><topic>Myelin Sheath - ultrastructure</topic><topic>Oligodendroglia - metabolism</topic><topic>Oligodendroglia - ultrastructure</topic><topic>Potassium - metabolism</topic><topic>Ranvier's Nodes - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>rodent</topic><topic>Subcellular Fractions - metabolism</topic><topic>Tissue Distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamasawa, N.</creatorcontrib><creatorcontrib>Sik, A.</creatorcontrib><creatorcontrib>Morita, M.</creatorcontrib><creatorcontrib>Yasumura, T.</creatorcontrib><creatorcontrib>Davidson, K.G.V.</creatorcontrib><creatorcontrib>Nagy, J.I.</creatorcontrib><creatorcontrib>Rash, J.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamasawa, N.</au><au>Sik, A.</au><au>Morita, M.</au><au>Yasumura, T.</au><au>Davidson, K.G.V.</au><au>Nagy, J.I.</au><au>Rash, J.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: Implications for ionic homeostasis and potassium siphoning</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>2005</date><risdate>2005</risdate><volume>136</volume><issue>1</issue><spage>65</spage><epage>86</epage><pages>65-86</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><coden>NRSCDN</coden><abstract>The subcellular distributions and co-associations of the gap junction-forming proteins connexin47 and connexin32 were investigated in oligodendrocytes of adult mouse and rat CNS. By confocal immunofluorescence light microscopy, abundant connexin47 was co-localized with astrocytic connexin43 on oligodendrocyte somata, and along myelinated fibers, whereas connexin32 without connexin47 was co-localized with contactin-associated protein (caspr) in paranodes. By thin-section transmission electron microscopy, connexin47 immunolabeling was on the oligodendrocyte side of gap junctions between oligodendrocyte somata and astrocytes. By freeze-fracture replica immunogold labeling, large gap junctions between oligodendrocyte somata and astrocyte processes contained much more connexin47 than connexin32. Along surfaces of internodal myelin, connexin47 was several times as abundant as connexin32, and in the smallest gap junctions, often occurred without connexin32. In contrast, connexin32 was localized without connexin47 in newly-described autologous gap junctions in Schmidt-Lanterman incisures and between paranodal loops bordering nodes of Ranvier. Thus, connexin47 in adult rodent CNS is the most abundant connexin in most heterologous oligodendrocyte-to-astrocyte gap junctions, whereas connexin32 is the predominant if not sole connexin in autologous (“reflexive”) oligodendrocyte gap junctions. These results clarify the locations and connexin compositions of heterologous and autologous oligodendrocyte gap junctions, identify autologous gap junctions at paranodes as potential sites for modulating paranodal electrical properties, and reveal connexin47-containing and connexin32-containing gap junctions as conduits for long-distance intracellular and intercellular movement of ions and associated osmotic water. The autologous gap junctions may regulate paranodal electrical properties during saltatory conduction. Acting in series and in parallel, autologous and heterologous oligodendrocyte gap junctions provide essential pathways for intra- and intercellular ionic homeostasis.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>16203097</pmid><doi>10.1016/j.neuroscience.2005.08.027</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0306-4522
ispartof Neuroscience, 2005, Vol.136 (1), p.65-86
issn 0306-4522
1873-7544
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1550704
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Biological and medical sciences
Cell Adhesion Molecules, Neuronal - metabolism
Cell interactions, adhesion
Central Nervous System - cytology
Central Nervous System - metabolism
Central Nervous System - ultrastructure
confocal microscopy
Connexin 43 - metabolism
Connexins - metabolism
Cytoplasm - metabolism
Female
Fluorescent Antibody Technique
freeze fracture
Freeze Fracturing
Fundamental and applied biological sciences. Psychology
Gap Junction beta-1 Protein
Gap Junctions - metabolism
Gap Junctions - ultrastructure
Homeostasis
immunofluorescence
immunogold labeling
Immunohistochemistry
Ions
Male
Mice
Mice, Inbred Strains
Microscopy, Electron
Molecular and cellular biology
Myelin Sheath - metabolism
Myelin Sheath - ultrastructure
Oligodendroglia - metabolism
Oligodendroglia - ultrastructure
Potassium - metabolism
Ranvier's Nodes - metabolism
Rats
Rats, Sprague-Dawley
rodent
Subcellular Fractions - metabolism
Tissue Distribution
title Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: Implications for ionic homeostasis and potassium siphoning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A47%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connexin-47%20and%20connexin-32%20in%20gap%20junctions%20of%20oligodendrocyte%20somata,%20myelin%20sheaths,%20paranodal%20loops%20and%20Schmidt-Lanterman%20incisures:%20Implications%20for%20ionic%20homeostasis%20and%20potassium%20siphoning&rft.jtitle=Neuroscience&rft.au=Kamasawa,%20N.&rft.date=2005&rft.volume=136&rft.issue=1&rft.spage=65&rft.epage=86&rft.pages=65-86&rft.issn=0306-4522&rft.eissn=1873-7544&rft.coden=NRSCDN&rft_id=info:doi/10.1016/j.neuroscience.2005.08.027&rft_dat=%3Celsevier_pubme%3ES0306452205008973%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/16203097&rft_els_id=S0306452205008973&rfr_iscdi=true