Structural basis for antibiotic recognition by the TipA class of multidrug-resistance transcriptional regulators
The TipAL protein, a bacterial transcriptional regulator of the MerR family, is activated by numerous cyclic thiopeptide antibiotics. Its C‐terminal drug‐binding domain, TipAS, defines a subfamily of broadly distributed bacterial proteins including Mta, a central regulator of multidrug resistance in...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2003-04, Vol.22 (8), p.1824-1834 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1834 |
---|---|
container_issue | 8 |
container_start_page | 1824 |
container_title | The EMBO journal |
container_volume | 22 |
creator | Kahmann, Jan D. Sass, Hans-Jürgen Allan, Martin G. Seto, Haruo Thompson, Charles J. Grzesiek, Stephan |
description | The TipAL protein, a bacterial transcriptional regulator of the MerR family, is activated by numerous cyclic thiopeptide antibiotics. Its C‐terminal drug‐binding domain, TipAS, defines a subfamily of broadly distributed bacterial proteins including Mta, a central regulator of multidrug resistance in
Bacillus subtilis
. The structure of apo TipAS, solved by solution NMR [Brookhaven Protein Data Bank entry 1NY9], is composed of a globin‐like α‐helical fold with a deep surface cleft and an unfolded N‐terminal region. Antibiotics bind within the cleft at a position that is close to the corresponding heme pocket in myo‐ and hemoglobin, and induce folding of the N‐terminus. Thus the classical globin fold is well adapted not only for accommodating its canonical cofactors, heme and other tetrapyrroles, but also for the recognition of a variety of antibiotics where ligand binding leads to transcriptional activation and drug resistance. |
doi_str_mv | 10.1093/emboj/cdg181 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_154473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73178396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6470-dda26c5e99385f49fa1d5e1c1e20e03d981ca0125e618dd1a71869cbf38869663</originalsourceid><addsrcrecordid>eNqFkjtz1DAUhT0MDFkCHS2MhoIKE13LehUUIZMEQoCCMNBpZFl2tHitRZKB_fcoeGcJj4FKxf3O0ZHOLYr7gJ8CluTArhq_PDBtDwJuFAuoGS4rzOnNYoErBmUNQu4Vd2JcYoyp4HC72IOKiQoDXRTrdylMJk1BD6jR0UXU-YD0mFzjfHIGBWt8P7rk_IiaDUqXFl249SEyg44R-Q6tpiG5Nkx9GWzWJz0ai1LQYzTBra902TrYfhp08iHeLW51eoj23vbcL96fHF8cvSjP356-PDo8Lw2rOS7bVlfMUCslEbSrZaehpRYM2ApbTFopwGgMFbUMRNuC5iCYNE1HRD4ZI_vFs9l3PTUr2xo75kyDWge30mGjvHbq18noLlXvvyigdc1J1j_e6oP_PNmY1MpFY4dBj9ZPUXECXBDJ_guCyCilMoOPfgOXfgr5dzIjaUU5qaoMPZkhE3yMwXa7xIDVVd_qR99q7jvjD6-_8ie8LTgDdAa-usFu_mmmjl8_P-NUUixx1pWzLmbJ2NtwLezfgzyY-VHnZbK7i_7wyxtiv-3GOnxSjBNO1Yc3p-rk49k5BiHUK_IdQ9_kdg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195257322</pqid></control><display><type>article</type><title>Structural basis for antibiotic recognition by the TipA class of multidrug-resistance transcriptional regulators</title><source>MEDLINE</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kahmann, Jan D. ; Sass, Hans-Jürgen ; Allan, Martin G. ; Seto, Haruo ; Thompson, Charles J. ; Grzesiek, Stephan</creator><creatorcontrib>Kahmann, Jan D. ; Sass, Hans-Jürgen ; Allan, Martin G. ; Seto, Haruo ; Thompson, Charles J. ; Grzesiek, Stephan</creatorcontrib><description>The TipAL protein, a bacterial transcriptional regulator of the MerR family, is activated by numerous cyclic thiopeptide antibiotics. Its C‐terminal drug‐binding domain, TipAS, defines a subfamily of broadly distributed bacterial proteins including Mta, a central regulator of multidrug resistance in
Bacillus subtilis
. The structure of apo TipAS, solved by solution NMR [Brookhaven Protein Data Bank entry 1NY9], is composed of a globin‐like α‐helical fold with a deep surface cleft and an unfolded N‐terminal region. Antibiotics bind within the cleft at a position that is close to the corresponding heme pocket in myo‐ and hemoglobin, and induce folding of the N‐terminus. Thus the classical globin fold is well adapted not only for accommodating its canonical cofactors, heme and other tetrapyrroles, but also for the recognition of a variety of antibiotics where ligand binding leads to transcriptional activation and drug resistance.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/cdg181</identifier><identifier>PMID: 12682015</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Amino Acid Sequence ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - metabolism ; antibiotic recognition ; Antibiotics ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding Sites ; Drug resistance ; Drug Resistance, Multiple - physiology ; EMBO24 ; EMBO40 ; globin fold ; heteronuclear NMR ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Nuclear Magnetic Resonance, Biomolecular ; protein dynamics ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Alignment ; Structure-Activity Relationship ; Trans-Activators - chemistry ; Trans-Activators - genetics ; Trans-Activators - metabolism ; transcriptional regulation</subject><ispartof>The EMBO journal, 2003-04, Vol.22 (8), p.1824-1834</ispartof><rights>European Molecular Biology Organization 2003</rights><rights>Copyright © 2003 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Apr 15, 2003</rights><rights>Copyright © 2003 European Molecular Biology Organization 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6470-dda26c5e99385f49fa1d5e1c1e20e03d981ca0125e618dd1a71869cbf38869663</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC154473/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC154473/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1416,1432,27923,27924,45573,45574,46408,46832,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12682015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kahmann, Jan D.</creatorcontrib><creatorcontrib>Sass, Hans-Jürgen</creatorcontrib><creatorcontrib>Allan, Martin G.</creatorcontrib><creatorcontrib>Seto, Haruo</creatorcontrib><creatorcontrib>Thompson, Charles J.</creatorcontrib><creatorcontrib>Grzesiek, Stephan</creatorcontrib><title>Structural basis for antibiotic recognition by the TipA class of multidrug-resistance transcriptional regulators</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The TipAL protein, a bacterial transcriptional regulator of the MerR family, is activated by numerous cyclic thiopeptide antibiotics. Its C‐terminal drug‐binding domain, TipAS, defines a subfamily of broadly distributed bacterial proteins including Mta, a central regulator of multidrug resistance in
Bacillus subtilis
. The structure of apo TipAS, solved by solution NMR [Brookhaven Protein Data Bank entry 1NY9], is composed of a globin‐like α‐helical fold with a deep surface cleft and an unfolded N‐terminal region. Antibiotics bind within the cleft at a position that is close to the corresponding heme pocket in myo‐ and hemoglobin, and induce folding of the N‐terminus. Thus the classical globin fold is well adapted not only for accommodating its canonical cofactors, heme and other tetrapyrroles, but also for the recognition of a variety of antibiotics where ligand binding leads to transcriptional activation and drug resistance.</description><subject>Amino Acid Sequence</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - metabolism</subject><subject>antibiotic recognition</subject><subject>Antibiotics</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Drug resistance</subject><subject>Drug Resistance, Multiple - physiology</subject><subject>EMBO24</subject><subject>EMBO40</subject><subject>globin fold</subject><subject>heteronuclear NMR</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Molecular Structure</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>protein dynamics</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Sequence Alignment</subject><subject>Structure-Activity Relationship</subject><subject>Trans-Activators - chemistry</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>transcriptional regulation</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkjtz1DAUhT0MDFkCHS2MhoIKE13LehUUIZMEQoCCMNBpZFl2tHitRZKB_fcoeGcJj4FKxf3O0ZHOLYr7gJ8CluTArhq_PDBtDwJuFAuoGS4rzOnNYoErBmUNQu4Vd2JcYoyp4HC72IOKiQoDXRTrdylMJk1BD6jR0UXU-YD0mFzjfHIGBWt8P7rk_IiaDUqXFl249SEyg44R-Q6tpiG5Nkx9GWzWJz0ai1LQYzTBra902TrYfhp08iHeLW51eoj23vbcL96fHF8cvSjP356-PDo8Lw2rOS7bVlfMUCslEbSrZaehpRYM2ApbTFopwGgMFbUMRNuC5iCYNE1HRD4ZI_vFs9l3PTUr2xo75kyDWge30mGjvHbq18noLlXvvyigdc1J1j_e6oP_PNmY1MpFY4dBj9ZPUXECXBDJ_guCyCilMoOPfgOXfgr5dzIjaUU5qaoMPZkhE3yMwXa7xIDVVd_qR99q7jvjD6-_8ie8LTgDdAa-usFu_mmmjl8_P-NUUixx1pWzLmbJ2NtwLezfgzyY-VHnZbK7i_7wyxtiv-3GOnxSjBNO1Yc3p-rk49k5BiHUK_IdQ9_kdg</recordid><startdate>20030415</startdate><enddate>20030415</enddate><creator>Kahmann, Jan D.</creator><creator>Sass, Hans-Jürgen</creator><creator>Allan, Martin G.</creator><creator>Seto, Haruo</creator><creator>Thompson, Charles J.</creator><creator>Grzesiek, Stephan</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030415</creationdate><title>Structural basis for antibiotic recognition by the TipA class of multidrug-resistance transcriptional regulators</title><author>Kahmann, Jan D. ; Sass, Hans-Jürgen ; Allan, Martin G. ; Seto, Haruo ; Thompson, Charles J. ; Grzesiek, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6470-dda26c5e99385f49fa1d5e1c1e20e03d981ca0125e618dd1a71869cbf38869663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Sequence</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - metabolism</topic><topic>antibiotic recognition</topic><topic>Antibiotics</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Drug resistance</topic><topic>Drug Resistance, Multiple - physiology</topic><topic>EMBO24</topic><topic>EMBO40</topic><topic>globin fold</topic><topic>heteronuclear NMR</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Molecular Structure</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>protein dynamics</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Sequence Alignment</topic><topic>Structure-Activity Relationship</topic><topic>Trans-Activators - chemistry</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>transcriptional regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kahmann, Jan D.</creatorcontrib><creatorcontrib>Sass, Hans-Jürgen</creatorcontrib><creatorcontrib>Allan, Martin G.</creatorcontrib><creatorcontrib>Seto, Haruo</creatorcontrib><creatorcontrib>Thompson, Charles J.</creatorcontrib><creatorcontrib>Grzesiek, Stephan</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kahmann, Jan D.</au><au>Sass, Hans-Jürgen</au><au>Allan, Martin G.</au><au>Seto, Haruo</au><au>Thompson, Charles J.</au><au>Grzesiek, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for antibiotic recognition by the TipA class of multidrug-resistance transcriptional regulators</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2003-04-15</date><risdate>2003</risdate><volume>22</volume><issue>8</issue><spage>1824</spage><epage>1834</epage><pages>1824-1834</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>The TipAL protein, a bacterial transcriptional regulator of the MerR family, is activated by numerous cyclic thiopeptide antibiotics. Its C‐terminal drug‐binding domain, TipAS, defines a subfamily of broadly distributed bacterial proteins including Mta, a central regulator of multidrug resistance in
Bacillus subtilis
. The structure of apo TipAS, solved by solution NMR [Brookhaven Protein Data Bank entry 1NY9], is composed of a globin‐like α‐helical fold with a deep surface cleft and an unfolded N‐terminal region. Antibiotics bind within the cleft at a position that is close to the corresponding heme pocket in myo‐ and hemoglobin, and induce folding of the N‐terminus. Thus the classical globin fold is well adapted not only for accommodating its canonical cofactors, heme and other tetrapyrroles, but also for the recognition of a variety of antibiotics where ligand binding leads to transcriptional activation and drug resistance.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>12682015</pmid><doi>10.1093/emboj/cdg181</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2003-04, Vol.22 (8), p.1824-1834 |
issn | 0261-4189 1460-2075 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_154473 |
source | MEDLINE; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - metabolism antibiotic recognition Antibiotics Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Binding Sites Drug resistance Drug Resistance, Multiple - physiology EMBO24 EMBO40 globin fold heteronuclear NMR Ligands Models, Molecular Molecular Sequence Data Molecular Structure Nuclear Magnetic Resonance, Biomolecular protein dynamics Protein Folding Protein Structure, Secondary Protein Structure, Tertiary Sequence Alignment Structure-Activity Relationship Trans-Activators - chemistry Trans-Activators - genetics Trans-Activators - metabolism transcriptional regulation |
title | Structural basis for antibiotic recognition by the TipA class of multidrug-resistance transcriptional regulators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20antibiotic%20recognition%20by%20the%20TipA%20class%20of%20multidrug-resistance%20transcriptional%20regulators&rft.jtitle=The%20EMBO%20journal&rft.au=Kahmann,%20Jan%20D.&rft.date=2003-04-15&rft.volume=22&rft.issue=8&rft.spage=1824&rft.epage=1834&rft.pages=1824-1834&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/cdg181&rft_dat=%3Cproquest_pubme%3E73178396%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195257322&rft_id=info:pmid/12682015&rfr_iscdi=true |