Hormone and Seed-Specific Regulation of Pea Fruit Growth

Growth of young pea (Pisum sativum) fruit (pericarp) requires developing seeds or, in the absence of seeds, treatment with gibberellin (GA) or auxin (4-chloroindole-3-acetic acid). This study examined the role of seeds and hormones in the regulation of cell division and elongation in early pea fruit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2002-04, Vol.128 (4), p.1379-1389
Hauptverfasser: Jocelyn A. Ozga, van Huizen, Rika, Dennis M. Reinecke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1389
container_issue 4
container_start_page 1379
container_title Plant physiology (Bethesda)
container_volume 128
creator Jocelyn A. Ozga
van Huizen, Rika
Dennis M. Reinecke
description Growth of young pea (Pisum sativum) fruit (pericarp) requires developing seeds or, in the absence of seeds, treatment with gibberellin (GA) or auxin (4-chloroindole-3-acetic acid). This study examined the role of seeds and hormones in the regulation of cell division and elongation in early pea fruit development. Profiling histone H2A and γ-tonoplast intrinsic protein (TIP) gene expression during early fruit development identified the relative contributions of cell division and elongation to fruit growth, whereas histological studies identified specific zones of cell division and elongation in exocarp, mesocarp, and endocarp tissues. Molecular and histological studies showed that maximal cell division was from -2 to 2 d after anthesis (DAA) and elongation from 2 to 5 DAA in pea pericarp. Maximal increase in pericarp γ-TIP message level preceded the maximal rate of fruit growth and, in general, γ-TIP mRNA level was useful as a qualitative marker for expanding tissue, but not as a quantitative marker for cell expansion. Seed removal resulted in rapid decreases in pericarp growth and in γ-TIP and histone H2A message levels. In general, GA and 4-chloroindole-3-acetic acid maintained these processes in deseeded pericarp similarly to pericarps with seeds, and both hormones were required to obtain mesocarp cell sizes equivalent to intact fruit. However, GA treatment to deseeded pericarps resulted in elevated levels of γ-TIP mRNA (6 and 7 DAA) when pericarp growth and cell enlargement were minimal. Our data support the theory that cell division and elongation are developmentally regulated during early pea fruit growth and are maintained by the hormonal interaction of GA and auxin.
doi_str_mv 10.1104/pp.010800
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_154265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4280416</jstor_id><sourcerecordid>4280416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-5e20d2b91e6cd699aa9bb4d66e194c3d54cb683a7e9b5d3ab54b5d5a4fa6c2483</originalsourceid><addsrcrecordid>eNpd0c1LHDEUAPBQWuq69tB7KUPBQg9j38vXJoceRKoWhErVc8hkMppldjImM4r_fVN20banF3i_F94HIe8RjhCBfx3HI0BQAK_IAgWjNRVcvSYLgPIGpfQe2c95DQDIkL8le4hagFZyQdR5TJs4-MoObXXlfVtfjd6FLrjql7-dezuFOFSxqy69rU7THKbqLMXH6e6AvOlsn_27XVySm9Pv1yfn9cXPsx8nxxe1k4hTLTyFljYavXSt1Npa3TS8ldKj5o61grtGKmZXXjeiZbYRvERheWelo1yxJfm2_Xecm41vnR-mZHszprCx6clEG8y_mSHcmdv4YFBwKkWp_7yrT_F-9nkym5Cd73s7-Dhng4pqKeiqwE__wXWc01BmMxSVZJSVdS7Jly1yKeacfPfcCIL5cwszjmZ7i2I__t35i9wtv4DDHbDZ2b5LdnAhvzgmGVsBK-7D1q3zFNNznlMFHCX7DSEpmhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218632300</pqid></control><display><type>article</type><title>Hormone and Seed-Specific Regulation of Pea Fruit Growth</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jocelyn A. Ozga ; van Huizen, Rika ; Dennis M. Reinecke</creator><creatorcontrib>Jocelyn A. Ozga ; van Huizen, Rika ; Dennis M. Reinecke</creatorcontrib><description>Growth of young pea (Pisum sativum) fruit (pericarp) requires developing seeds or, in the absence of seeds, treatment with gibberellin (GA) or auxin (4-chloroindole-3-acetic acid). This study examined the role of seeds and hormones in the regulation of cell division and elongation in early pea fruit development. Profiling histone H2A and γ-tonoplast intrinsic protein (TIP) gene expression during early fruit development identified the relative contributions of cell division and elongation to fruit growth, whereas histological studies identified specific zones of cell division and elongation in exocarp, mesocarp, and endocarp tissues. Molecular and histological studies showed that maximal cell division was from -2 to 2 d after anthesis (DAA) and elongation from 2 to 5 DAA in pea pericarp. Maximal increase in pericarp γ-TIP message level preceded the maximal rate of fruit growth and, in general, γ-TIP mRNA level was useful as a qualitative marker for expanding tissue, but not as a quantitative marker for cell expansion. Seed removal resulted in rapid decreases in pericarp growth and in γ-TIP and histone H2A message levels. In general, GA and 4-chloroindole-3-acetic acid maintained these processes in deseeded pericarp similarly to pericarps with seeds, and both hormones were required to obtain mesocarp cell sizes equivalent to intact fruit. However, GA treatment to deseeded pericarps resulted in elevated levels of γ-TIP mRNA (6 and 7 DAA) when pericarp growth and cell enlargement were minimal. Our data support the theory that cell division and elongation are developmentally regulated during early pea fruit growth and are maintained by the hormonal interaction of GA and auxin.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.010800</identifier><identifier>PMID: 11950986</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>4-chloroindole-3-acetic acid ; Acetic acid ; Agronomy. Soil science and plant productions ; Aquaporins ; Biological and medical sciences ; Cell Division - drug effects ; Cell growth ; Development and Hormone Action ; Economic plant physiology ; Endocarp ; Fructification and ripening ; Fructification, ripening. Postharvest physiology ; Fruit - drug effects ; Fruit - genetics ; Fruit - growth &amp; development ; Fruits ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; Gibberellins - pharmacology ; Growth and development ; Histones ; Histones - genetics ; Hormones ; Indoleacetic Acids - pharmacology ; Membrane Proteins - genetics ; Mesocarp ; Messenger RNA ; Peas ; Pericarp ; Pisum sativum ; Pisum sativum - drug effects ; Pisum sativum - genetics ; Pisum sativum - growth &amp; development ; Plant Growth Regulators - pharmacology ; Plant physiology and development ; Plant Proteins - genetics ; Plants ; Reproduction ; Seeds ; Seeds - drug effects ; Seeds - genetics ; Seeds - growth &amp; development ; Time Factors ; TIP protein ; Vegetative and sexual reproduction, floral biology, fructification</subject><ispartof>Plant physiology (Bethesda), 2002-04, Vol.128 (4), p.1379-1389</ispartof><rights>Copyright 2002 American Society of Plant Biologists</rights><rights>2002 INIST-CNRS</rights><rights>Copyright American Society of Plant Physiologists Apr 2002</rights><rights>Copyright © 2002, American Society of Plant Physiologists 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c611t-5e20d2b91e6cd699aa9bb4d66e194c3d54cb683a7e9b5d3ab54b5d5a4fa6c2483</citedby><cites>FETCH-LOGICAL-c611t-5e20d2b91e6cd699aa9bb4d66e194c3d54cb683a7e9b5d3ab54b5d5a4fa6c2483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4280416$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4280416$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13633703$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11950986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jocelyn A. Ozga</creatorcontrib><creatorcontrib>van Huizen, Rika</creatorcontrib><creatorcontrib>Dennis M. Reinecke</creatorcontrib><title>Hormone and Seed-Specific Regulation of Pea Fruit Growth</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Growth of young pea (Pisum sativum) fruit (pericarp) requires developing seeds or, in the absence of seeds, treatment with gibberellin (GA) or auxin (4-chloroindole-3-acetic acid). This study examined the role of seeds and hormones in the regulation of cell division and elongation in early pea fruit development. Profiling histone H2A and γ-tonoplast intrinsic protein (TIP) gene expression during early fruit development identified the relative contributions of cell division and elongation to fruit growth, whereas histological studies identified specific zones of cell division and elongation in exocarp, mesocarp, and endocarp tissues. Molecular and histological studies showed that maximal cell division was from -2 to 2 d after anthesis (DAA) and elongation from 2 to 5 DAA in pea pericarp. Maximal increase in pericarp γ-TIP message level preceded the maximal rate of fruit growth and, in general, γ-TIP mRNA level was useful as a qualitative marker for expanding tissue, but not as a quantitative marker for cell expansion. Seed removal resulted in rapid decreases in pericarp growth and in γ-TIP and histone H2A message levels. In general, GA and 4-chloroindole-3-acetic acid maintained these processes in deseeded pericarp similarly to pericarps with seeds, and both hormones were required to obtain mesocarp cell sizes equivalent to intact fruit. However, GA treatment to deseeded pericarps resulted in elevated levels of γ-TIP mRNA (6 and 7 DAA) when pericarp growth and cell enlargement were minimal. Our data support the theory that cell division and elongation are developmentally regulated during early pea fruit growth and are maintained by the hormonal interaction of GA and auxin.</description><subject>4-chloroindole-3-acetic acid</subject><subject>Acetic acid</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Aquaporins</subject><subject>Biological and medical sciences</subject><subject>Cell Division - drug effects</subject><subject>Cell growth</subject><subject>Development and Hormone Action</subject><subject>Economic plant physiology</subject><subject>Endocarp</subject><subject>Fructification and ripening</subject><subject>Fructification, ripening. Postharvest physiology</subject><subject>Fruit - drug effects</subject><subject>Fruit - genetics</subject><subject>Fruit - growth &amp; development</subject><subject>Fruits</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gibberellins - pharmacology</subject><subject>Growth and development</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Hormones</subject><subject>Indoleacetic Acids - pharmacology</subject><subject>Membrane Proteins - genetics</subject><subject>Mesocarp</subject><subject>Messenger RNA</subject><subject>Peas</subject><subject>Pericarp</subject><subject>Pisum sativum</subject><subject>Pisum sativum - drug effects</subject><subject>Pisum sativum - genetics</subject><subject>Pisum sativum - growth &amp; development</subject><subject>Plant Growth Regulators - pharmacology</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plants</subject><subject>Reproduction</subject><subject>Seeds</subject><subject>Seeds - drug effects</subject><subject>Seeds - genetics</subject><subject>Seeds - growth &amp; development</subject><subject>Time Factors</subject><subject>TIP protein</subject><subject>Vegetative and sexual reproduction, floral biology, fructification</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0c1LHDEUAPBQWuq69tB7KUPBQg9j38vXJoceRKoWhErVc8hkMppldjImM4r_fVN20banF3i_F94HIe8RjhCBfx3HI0BQAK_IAgWjNRVcvSYLgPIGpfQe2c95DQDIkL8le4hagFZyQdR5TJs4-MoObXXlfVtfjd6FLrjql7-dezuFOFSxqy69rU7THKbqLMXH6e6AvOlsn_27XVySm9Pv1yfn9cXPsx8nxxe1k4hTLTyFljYavXSt1Npa3TS8ldKj5o61grtGKmZXXjeiZbYRvERheWelo1yxJfm2_Xecm41vnR-mZHszprCx6clEG8y_mSHcmdv4YFBwKkWp_7yrT_F-9nkym5Cd73s7-Dhng4pqKeiqwE__wXWc01BmMxSVZJSVdS7Jly1yKeacfPfcCIL5cwszjmZ7i2I__t35i9wtv4DDHbDZ2b5LdnAhvzgmGVsBK-7D1q3zFNNznlMFHCX7DSEpmhA</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Jocelyn A. Ozga</creator><creator>van Huizen, Rika</creator><creator>Dennis M. Reinecke</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20020401</creationdate><title>Hormone and Seed-Specific Regulation of Pea Fruit Growth</title><author>Jocelyn A. Ozga ; van Huizen, Rika ; Dennis M. Reinecke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-5e20d2b91e6cd699aa9bb4d66e194c3d54cb683a7e9b5d3ab54b5d5a4fa6c2483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>4-chloroindole-3-acetic acid</topic><topic>Acetic acid</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Aquaporins</topic><topic>Biological and medical sciences</topic><topic>Cell Division - drug effects</topic><topic>Cell growth</topic><topic>Development and Hormone Action</topic><topic>Economic plant physiology</topic><topic>Endocarp</topic><topic>Fructification and ripening</topic><topic>Fructification, ripening. Postharvest physiology</topic><topic>Fruit - drug effects</topic><topic>Fruit - genetics</topic><topic>Fruit - growth &amp; development</topic><topic>Fruits</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gibberellins - pharmacology</topic><topic>Growth and development</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Hormones</topic><topic>Indoleacetic Acids - pharmacology</topic><topic>Membrane Proteins - genetics</topic><topic>Mesocarp</topic><topic>Messenger RNA</topic><topic>Peas</topic><topic>Pericarp</topic><topic>Pisum sativum</topic><topic>Pisum sativum - drug effects</topic><topic>Pisum sativum - genetics</topic><topic>Pisum sativum - growth &amp; development</topic><topic>Plant Growth Regulators - pharmacology</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plants</topic><topic>Reproduction</topic><topic>Seeds</topic><topic>Seeds - drug effects</topic><topic>Seeds - genetics</topic><topic>Seeds - growth &amp; development</topic><topic>Time Factors</topic><topic>TIP protein</topic><topic>Vegetative and sexual reproduction, floral biology, fructification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jocelyn A. Ozga</creatorcontrib><creatorcontrib>van Huizen, Rika</creatorcontrib><creatorcontrib>Dennis M. Reinecke</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jocelyn A. Ozga</au><au>van Huizen, Rika</au><au>Dennis M. Reinecke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hormone and Seed-Specific Regulation of Pea Fruit Growth</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2002-04-01</date><risdate>2002</risdate><volume>128</volume><issue>4</issue><spage>1379</spage><epage>1389</epage><pages>1379-1389</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Growth of young pea (Pisum sativum) fruit (pericarp) requires developing seeds or, in the absence of seeds, treatment with gibberellin (GA) or auxin (4-chloroindole-3-acetic acid). This study examined the role of seeds and hormones in the regulation of cell division and elongation in early pea fruit development. Profiling histone H2A and γ-tonoplast intrinsic protein (TIP) gene expression during early fruit development identified the relative contributions of cell division and elongation to fruit growth, whereas histological studies identified specific zones of cell division and elongation in exocarp, mesocarp, and endocarp tissues. Molecular and histological studies showed that maximal cell division was from -2 to 2 d after anthesis (DAA) and elongation from 2 to 5 DAA in pea pericarp. Maximal increase in pericarp γ-TIP message level preceded the maximal rate of fruit growth and, in general, γ-TIP mRNA level was useful as a qualitative marker for expanding tissue, but not as a quantitative marker for cell expansion. Seed removal resulted in rapid decreases in pericarp growth and in γ-TIP and histone H2A message levels. In general, GA and 4-chloroindole-3-acetic acid maintained these processes in deseeded pericarp similarly to pericarps with seeds, and both hormones were required to obtain mesocarp cell sizes equivalent to intact fruit. However, GA treatment to deseeded pericarps resulted in elevated levels of γ-TIP mRNA (6 and 7 DAA) when pericarp growth and cell enlargement were minimal. Our data support the theory that cell division and elongation are developmentally regulated during early pea fruit growth and are maintained by the hormonal interaction of GA and auxin.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>11950986</pmid><doi>10.1104/pp.010800</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2002-04, Vol.128 (4), p.1379-1389
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_154265
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects 4-chloroindole-3-acetic acid
Acetic acid
Agronomy. Soil science and plant productions
Aquaporins
Biological and medical sciences
Cell Division - drug effects
Cell growth
Development and Hormone Action
Economic plant physiology
Endocarp
Fructification and ripening
Fructification, ripening. Postharvest physiology
Fruit - drug effects
Fruit - genetics
Fruit - growth & development
Fruits
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Developmental
Gene Expression Regulation, Plant
Gibberellins - pharmacology
Growth and development
Histones
Histones - genetics
Hormones
Indoleacetic Acids - pharmacology
Membrane Proteins - genetics
Mesocarp
Messenger RNA
Peas
Pericarp
Pisum sativum
Pisum sativum - drug effects
Pisum sativum - genetics
Pisum sativum - growth & development
Plant Growth Regulators - pharmacology
Plant physiology and development
Plant Proteins - genetics
Plants
Reproduction
Seeds
Seeds - drug effects
Seeds - genetics
Seeds - growth & development
Time Factors
TIP protein
Vegetative and sexual reproduction, floral biology, fructification
title Hormone and Seed-Specific Regulation of Pea Fruit Growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hormone%20and%20Seed-Specific%20Regulation%20of%20Pea%20Fruit%20Growth&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Jocelyn%20A.%20Ozga&rft.date=2002-04-01&rft.volume=128&rft.issue=4&rft.spage=1379&rft.epage=1389&rft.pages=1379-1389&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.010800&rft_dat=%3Cjstor_pubme%3E4280416%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218632300&rft_id=info:pmid/11950986&rft_jstor_id=4280416&rfr_iscdi=true