Hormone and Seed-Specific Regulation of Pea Fruit Growth
Growth of young pea (Pisum sativum) fruit (pericarp) requires developing seeds or, in the absence of seeds, treatment with gibberellin (GA) or auxin (4-chloroindole-3-acetic acid). This study examined the role of seeds and hormones in the regulation of cell division and elongation in early pea fruit...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2002-04, Vol.128 (4), p.1379-1389 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1389 |
---|---|
container_issue | 4 |
container_start_page | 1379 |
container_title | Plant physiology (Bethesda) |
container_volume | 128 |
creator | Jocelyn A. Ozga van Huizen, Rika Dennis M. Reinecke |
description | Growth of young pea (Pisum sativum) fruit (pericarp) requires developing seeds or, in the absence of seeds, treatment with gibberellin (GA) or auxin (4-chloroindole-3-acetic acid). This study examined the role of seeds and hormones in the regulation of cell division and elongation in early pea fruit development. Profiling histone H2A and γ-tonoplast intrinsic protein (TIP) gene expression during early fruit development identified the relative contributions of cell division and elongation to fruit growth, whereas histological studies identified specific zones of cell division and elongation in exocarp, mesocarp, and endocarp tissues. Molecular and histological studies showed that maximal cell division was from -2 to 2 d after anthesis (DAA) and elongation from 2 to 5 DAA in pea pericarp. Maximal increase in pericarp γ-TIP message level preceded the maximal rate of fruit growth and, in general, γ-TIP mRNA level was useful as a qualitative marker for expanding tissue, but not as a quantitative marker for cell expansion. Seed removal resulted in rapid decreases in pericarp growth and in γ-TIP and histone H2A message levels. In general, GA and 4-chloroindole-3-acetic acid maintained these processes in deseeded pericarp similarly to pericarps with seeds, and both hormones were required to obtain mesocarp cell sizes equivalent to intact fruit. However, GA treatment to deseeded pericarps resulted in elevated levels of γ-TIP mRNA (6 and 7 DAA) when pericarp growth and cell enlargement were minimal. Our data support the theory that cell division and elongation are developmentally regulated during early pea fruit growth and are maintained by the hormonal interaction of GA and auxin. |
doi_str_mv | 10.1104/pp.010800 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_154265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4280416</jstor_id><sourcerecordid>4280416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-5e20d2b91e6cd699aa9bb4d66e194c3d54cb683a7e9b5d3ab54b5d5a4fa6c2483</originalsourceid><addsrcrecordid>eNpd0c1LHDEUAPBQWuq69tB7KUPBQg9j38vXJoceRKoWhErVc8hkMppldjImM4r_fVN20banF3i_F94HIe8RjhCBfx3HI0BQAK_IAgWjNRVcvSYLgPIGpfQe2c95DQDIkL8le4hagFZyQdR5TJs4-MoObXXlfVtfjd6FLrjql7-dezuFOFSxqy69rU7THKbqLMXH6e6AvOlsn_27XVySm9Pv1yfn9cXPsx8nxxe1k4hTLTyFljYavXSt1Npa3TS8ldKj5o61grtGKmZXXjeiZbYRvERheWelo1yxJfm2_Xecm41vnR-mZHszprCx6clEG8y_mSHcmdv4YFBwKkWp_7yrT_F-9nkym5Cd73s7-Dhng4pqKeiqwE__wXWc01BmMxSVZJSVdS7Jly1yKeacfPfcCIL5cwszjmZ7i2I__t35i9wtv4DDHbDZ2b5LdnAhvzgmGVsBK-7D1q3zFNNznlMFHCX7DSEpmhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218632300</pqid></control><display><type>article</type><title>Hormone and Seed-Specific Regulation of Pea Fruit Growth</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jocelyn A. Ozga ; van Huizen, Rika ; Dennis M. Reinecke</creator><creatorcontrib>Jocelyn A. Ozga ; van Huizen, Rika ; Dennis M. Reinecke</creatorcontrib><description>Growth of young pea (Pisum sativum) fruit (pericarp) requires developing seeds or, in the absence of seeds, treatment with gibberellin (GA) or auxin (4-chloroindole-3-acetic acid). This study examined the role of seeds and hormones in the regulation of cell division and elongation in early pea fruit development. Profiling histone H2A and γ-tonoplast intrinsic protein (TIP) gene expression during early fruit development identified the relative contributions of cell division and elongation to fruit growth, whereas histological studies identified specific zones of cell division and elongation in exocarp, mesocarp, and endocarp tissues. Molecular and histological studies showed that maximal cell division was from -2 to 2 d after anthesis (DAA) and elongation from 2 to 5 DAA in pea pericarp. Maximal increase in pericarp γ-TIP message level preceded the maximal rate of fruit growth and, in general, γ-TIP mRNA level was useful as a qualitative marker for expanding tissue, but not as a quantitative marker for cell expansion. Seed removal resulted in rapid decreases in pericarp growth and in γ-TIP and histone H2A message levels. In general, GA and 4-chloroindole-3-acetic acid maintained these processes in deseeded pericarp similarly to pericarps with seeds, and both hormones were required to obtain mesocarp cell sizes equivalent to intact fruit. However, GA treatment to deseeded pericarps resulted in elevated levels of γ-TIP mRNA (6 and 7 DAA) when pericarp growth and cell enlargement were minimal. Our data support the theory that cell division and elongation are developmentally regulated during early pea fruit growth and are maintained by the hormonal interaction of GA and auxin.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.010800</identifier><identifier>PMID: 11950986</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>4-chloroindole-3-acetic acid ; Acetic acid ; Agronomy. Soil science and plant productions ; Aquaporins ; Biological and medical sciences ; Cell Division - drug effects ; Cell growth ; Development and Hormone Action ; Economic plant physiology ; Endocarp ; Fructification and ripening ; Fructification, ripening. Postharvest physiology ; Fruit - drug effects ; Fruit - genetics ; Fruit - growth & development ; Fruits ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; Gibberellins - pharmacology ; Growth and development ; Histones ; Histones - genetics ; Hormones ; Indoleacetic Acids - pharmacology ; Membrane Proteins - genetics ; Mesocarp ; Messenger RNA ; Peas ; Pericarp ; Pisum sativum ; Pisum sativum - drug effects ; Pisum sativum - genetics ; Pisum sativum - growth & development ; Plant Growth Regulators - pharmacology ; Plant physiology and development ; Plant Proteins - genetics ; Plants ; Reproduction ; Seeds ; Seeds - drug effects ; Seeds - genetics ; Seeds - growth & development ; Time Factors ; TIP protein ; Vegetative and sexual reproduction, floral biology, fructification</subject><ispartof>Plant physiology (Bethesda), 2002-04, Vol.128 (4), p.1379-1389</ispartof><rights>Copyright 2002 American Society of Plant Biologists</rights><rights>2002 INIST-CNRS</rights><rights>Copyright American Society of Plant Physiologists Apr 2002</rights><rights>Copyright © 2002, American Society of Plant Physiologists 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c611t-5e20d2b91e6cd699aa9bb4d66e194c3d54cb683a7e9b5d3ab54b5d5a4fa6c2483</citedby><cites>FETCH-LOGICAL-c611t-5e20d2b91e6cd699aa9bb4d66e194c3d54cb683a7e9b5d3ab54b5d5a4fa6c2483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4280416$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4280416$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13633703$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11950986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jocelyn A. Ozga</creatorcontrib><creatorcontrib>van Huizen, Rika</creatorcontrib><creatorcontrib>Dennis M. Reinecke</creatorcontrib><title>Hormone and Seed-Specific Regulation of Pea Fruit Growth</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Growth of young pea (Pisum sativum) fruit (pericarp) requires developing seeds or, in the absence of seeds, treatment with gibberellin (GA) or auxin (4-chloroindole-3-acetic acid). This study examined the role of seeds and hormones in the regulation of cell division and elongation in early pea fruit development. Profiling histone H2A and γ-tonoplast intrinsic protein (TIP) gene expression during early fruit development identified the relative contributions of cell division and elongation to fruit growth, whereas histological studies identified specific zones of cell division and elongation in exocarp, mesocarp, and endocarp tissues. Molecular and histological studies showed that maximal cell division was from -2 to 2 d after anthesis (DAA) and elongation from 2 to 5 DAA in pea pericarp. Maximal increase in pericarp γ-TIP message level preceded the maximal rate of fruit growth and, in general, γ-TIP mRNA level was useful as a qualitative marker for expanding tissue, but not as a quantitative marker for cell expansion. Seed removal resulted in rapid decreases in pericarp growth and in γ-TIP and histone H2A message levels. In general, GA and 4-chloroindole-3-acetic acid maintained these processes in deseeded pericarp similarly to pericarps with seeds, and both hormones were required to obtain mesocarp cell sizes equivalent to intact fruit. However, GA treatment to deseeded pericarps resulted in elevated levels of γ-TIP mRNA (6 and 7 DAA) when pericarp growth and cell enlargement were minimal. Our data support the theory that cell division and elongation are developmentally regulated during early pea fruit growth and are maintained by the hormonal interaction of GA and auxin.</description><subject>4-chloroindole-3-acetic acid</subject><subject>Acetic acid</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Aquaporins</subject><subject>Biological and medical sciences</subject><subject>Cell Division - drug effects</subject><subject>Cell growth</subject><subject>Development and Hormone Action</subject><subject>Economic plant physiology</subject><subject>Endocarp</subject><subject>Fructification and ripening</subject><subject>Fructification, ripening. Postharvest physiology</subject><subject>Fruit - drug effects</subject><subject>Fruit - genetics</subject><subject>Fruit - growth & development</subject><subject>Fruits</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gibberellins - pharmacology</subject><subject>Growth and development</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Hormones</subject><subject>Indoleacetic Acids - pharmacology</subject><subject>Membrane Proteins - genetics</subject><subject>Mesocarp</subject><subject>Messenger RNA</subject><subject>Peas</subject><subject>Pericarp</subject><subject>Pisum sativum</subject><subject>Pisum sativum - drug effects</subject><subject>Pisum sativum - genetics</subject><subject>Pisum sativum - growth & development</subject><subject>Plant Growth Regulators - pharmacology</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plants</subject><subject>Reproduction</subject><subject>Seeds</subject><subject>Seeds - drug effects</subject><subject>Seeds - genetics</subject><subject>Seeds - growth & development</subject><subject>Time Factors</subject><subject>TIP protein</subject><subject>Vegetative and sexual reproduction, floral biology, fructification</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0c1LHDEUAPBQWuq69tB7KUPBQg9j38vXJoceRKoWhErVc8hkMppldjImM4r_fVN20banF3i_F94HIe8RjhCBfx3HI0BQAK_IAgWjNRVcvSYLgPIGpfQe2c95DQDIkL8le4hagFZyQdR5TJs4-MoObXXlfVtfjd6FLrjql7-dezuFOFSxqy69rU7THKbqLMXH6e6AvOlsn_27XVySm9Pv1yfn9cXPsx8nxxe1k4hTLTyFljYavXSt1Npa3TS8ldKj5o61grtGKmZXXjeiZbYRvERheWelo1yxJfm2_Xecm41vnR-mZHszprCx6clEG8y_mSHcmdv4YFBwKkWp_7yrT_F-9nkym5Cd73s7-Dhng4pqKeiqwE__wXWc01BmMxSVZJSVdS7Jly1yKeacfPfcCIL5cwszjmZ7i2I__t35i9wtv4DDHbDZ2b5LdnAhvzgmGVsBK-7D1q3zFNNznlMFHCX7DSEpmhA</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Jocelyn A. Ozga</creator><creator>van Huizen, Rika</creator><creator>Dennis M. Reinecke</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20020401</creationdate><title>Hormone and Seed-Specific Regulation of Pea Fruit Growth</title><author>Jocelyn A. Ozga ; van Huizen, Rika ; Dennis M. Reinecke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-5e20d2b91e6cd699aa9bb4d66e194c3d54cb683a7e9b5d3ab54b5d5a4fa6c2483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>4-chloroindole-3-acetic acid</topic><topic>Acetic acid</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Aquaporins</topic><topic>Biological and medical sciences</topic><topic>Cell Division - drug effects</topic><topic>Cell growth</topic><topic>Development and Hormone Action</topic><topic>Economic plant physiology</topic><topic>Endocarp</topic><topic>Fructification and ripening</topic><topic>Fructification, ripening. Postharvest physiology</topic><topic>Fruit - drug effects</topic><topic>Fruit - genetics</topic><topic>Fruit - growth & development</topic><topic>Fruits</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gibberellins - pharmacology</topic><topic>Growth and development</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Hormones</topic><topic>Indoleacetic Acids - pharmacology</topic><topic>Membrane Proteins - genetics</topic><topic>Mesocarp</topic><topic>Messenger RNA</topic><topic>Peas</topic><topic>Pericarp</topic><topic>Pisum sativum</topic><topic>Pisum sativum - drug effects</topic><topic>Pisum sativum - genetics</topic><topic>Pisum sativum - growth & development</topic><topic>Plant Growth Regulators - pharmacology</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plants</topic><topic>Reproduction</topic><topic>Seeds</topic><topic>Seeds - drug effects</topic><topic>Seeds - genetics</topic><topic>Seeds - growth & development</topic><topic>Time Factors</topic><topic>TIP protein</topic><topic>Vegetative and sexual reproduction, floral biology, fructification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jocelyn A. Ozga</creatorcontrib><creatorcontrib>van Huizen, Rika</creatorcontrib><creatorcontrib>Dennis M. Reinecke</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jocelyn A. Ozga</au><au>van Huizen, Rika</au><au>Dennis M. Reinecke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hormone and Seed-Specific Regulation of Pea Fruit Growth</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2002-04-01</date><risdate>2002</risdate><volume>128</volume><issue>4</issue><spage>1379</spage><epage>1389</epage><pages>1379-1389</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Growth of young pea (Pisum sativum) fruit (pericarp) requires developing seeds or, in the absence of seeds, treatment with gibberellin (GA) or auxin (4-chloroindole-3-acetic acid). This study examined the role of seeds and hormones in the regulation of cell division and elongation in early pea fruit development. Profiling histone H2A and γ-tonoplast intrinsic protein (TIP) gene expression during early fruit development identified the relative contributions of cell division and elongation to fruit growth, whereas histological studies identified specific zones of cell division and elongation in exocarp, mesocarp, and endocarp tissues. Molecular and histological studies showed that maximal cell division was from -2 to 2 d after anthesis (DAA) and elongation from 2 to 5 DAA in pea pericarp. Maximal increase in pericarp γ-TIP message level preceded the maximal rate of fruit growth and, in general, γ-TIP mRNA level was useful as a qualitative marker for expanding tissue, but not as a quantitative marker for cell expansion. Seed removal resulted in rapid decreases in pericarp growth and in γ-TIP and histone H2A message levels. In general, GA and 4-chloroindole-3-acetic acid maintained these processes in deseeded pericarp similarly to pericarps with seeds, and both hormones were required to obtain mesocarp cell sizes equivalent to intact fruit. However, GA treatment to deseeded pericarps resulted in elevated levels of γ-TIP mRNA (6 and 7 DAA) when pericarp growth and cell enlargement were minimal. Our data support the theory that cell division and elongation are developmentally regulated during early pea fruit growth and are maintained by the hormonal interaction of GA and auxin.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>11950986</pmid><doi>10.1104/pp.010800</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2002-04, Vol.128 (4), p.1379-1389 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_154265 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | 4-chloroindole-3-acetic acid Acetic acid Agronomy. Soil science and plant productions Aquaporins Biological and medical sciences Cell Division - drug effects Cell growth Development and Hormone Action Economic plant physiology Endocarp Fructification and ripening Fructification, ripening. Postharvest physiology Fruit - drug effects Fruit - genetics Fruit - growth & development Fruits Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Developmental Gene Expression Regulation, Plant Gibberellins - pharmacology Growth and development Histones Histones - genetics Hormones Indoleacetic Acids - pharmacology Membrane Proteins - genetics Mesocarp Messenger RNA Peas Pericarp Pisum sativum Pisum sativum - drug effects Pisum sativum - genetics Pisum sativum - growth & development Plant Growth Regulators - pharmacology Plant physiology and development Plant Proteins - genetics Plants Reproduction Seeds Seeds - drug effects Seeds - genetics Seeds - growth & development Time Factors TIP protein Vegetative and sexual reproduction, floral biology, fructification |
title | Hormone and Seed-Specific Regulation of Pea Fruit Growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hormone%20and%20Seed-Specific%20Regulation%20of%20Pea%20Fruit%20Growth&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Jocelyn%20A.%20Ozga&rft.date=2002-04-01&rft.volume=128&rft.issue=4&rft.spage=1379&rft.epage=1389&rft.pages=1379-1389&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.010800&rft_dat=%3Cjstor_pubme%3E4280416%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218632300&rft_id=info:pmid/11950986&rft_jstor_id=4280416&rfr_iscdi=true |