DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification
DiANNA is a recent state-of-the-art artificial neural network and web server, which determines the cysteine oxidation state and disulfide connectivity of a protein, given only its amino acid sequence. Version 1.0 of DiANNA uses a feed-forward neural network to determine which cysteines are involved...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2006-07, Vol.34 (suppl-2), p.W182-W185 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | W185 |
---|---|
container_issue | suppl-2 |
container_start_page | W182 |
container_title | Nucleic acids research |
container_volume | 34 |
creator | Ferrè, F Clote, P |
description | DiANNA is a recent state-of-the-art artificial neural network and web server, which determines the cysteine oxidation state and disulfide connectivity of a protein, given only its amino acid sequence. Version 1.0 of DiANNA uses a feed-forward neural network to determine which cysteines are involved in a disulfide bond, and employs a novel architecture neural network to predict which half-cystines are covalently bound to which other half-cystines. In version 1.1 of DiANNA, described here, we extend functionality by applying a support vector machine with spectrum kernel for the cysteine classification problem--to determine whether a cysteine is reduced (free in sulfhydryl state), half-cystine (involved in a disulfide bond) or bound to a metallic ligand. In the latter case, DiANNA predicts the ligand among iron, zinc, cadmium and carbon. Available at: http://bioinformatics.bc.edu/clotelab/DiANNA/. |
doi_str_mv | 10.1093/nar/gkl189 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1538812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19369433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-207099b31968c342cae7e891ab8eb94dcf5c6ecd32918c252e4fd053d3ddc2043</originalsourceid><addsrcrecordid>eNqF0ktvEzEQB_AVoqKhcOEDgMWBA9K248f6wQEpCtAgVUEUIiEuluOdTd1udou9Ke23x2ij8rjk5MP8_Lc1M0XxjMIxBcNPOhdP1lct1eZBMaFcslIYyR4WE-BQlRSEPiwep3QJQAWtxKPikEothNFqUizfheliMSX0mL4hriN4O2CXQt-RviHDBZJd_SeuSMJ4g5E0fSQDxvzqHfF3acDQIfGtSyk0wbshX35SHDSuTfh0dx4Vyw_vv87m5dmn04-z6VnpJYOhZKDAmBWnRmrPBfMOFWpD3UrjyojaN5WX6GvODNWeVQxFU0PFa17XnoHgR8XbMfd6u9pg7bEbomvtdQyb_Dvbu2D_rXThwq77G0srrjVlOeDVLiD2P7aYBrsJyWPbug77bbJSS8ENlXshy2Gy4mYvpIZLIzjP8OV_8LLf5q62OQxASmBK70GV0iCqjF6PyMc-pYjNfQMo2N8bYvOs7LghGT__u2V_6G4lMihHEPJob-_rLl5Zqbiq7Pzbd_t5DmIxU-f2PPsXo29cb906hmSXXxhQDhS0UsLwX_b3zho</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200578045</pqid></control><display><type>article</type><title>DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ferrè, F ; Clote, P</creator><creatorcontrib>Ferrè, F ; Clote, P</creatorcontrib><description>DiANNA is a recent state-of-the-art artificial neural network and web server, which determines the cysteine oxidation state and disulfide connectivity of a protein, given only its amino acid sequence. Version 1.0 of DiANNA uses a feed-forward neural network to determine which cysteines are involved in a disulfide bond, and employs a novel architecture neural network to predict which half-cystines are covalently bound to which other half-cystines. In version 1.1 of DiANNA, described here, we extend functionality by applying a support vector machine with spectrum kernel for the cysteine classification problem--to determine whether a cysteine is reduced (free in sulfhydryl state), half-cystine (involved in a disulfide bond) or bound to a metallic ligand. In the latter case, DiANNA predicts the ligand among iron, zinc, cadmium and carbon. Available at: http://bioinformatics.bc.edu/clotelab/DiANNA/.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkl189</identifier><identifier>PMID: 16844987</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Artificial Intelligence ; Cysteine - chemistry ; Cysteine - classification ; Disulfides - chemistry ; Internet ; Oxidation-Reduction ; Proteins - chemistry ; Sequence Analysis, Protein ; Software ; User-Computer Interface</subject><ispartof>Nucleic acids research, 2006-07, Vol.34 (suppl-2), p.W182-W185</ispartof><rights>The Author 2006. Published by Oxford University Press. All rights reserved The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org</rights><rights>Copyright Oxford University Press(England) 2006</rights><rights>The Author 2006. Published by Oxford University Press. All rights reserved 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-207099b31968c342cae7e891ab8eb94dcf5c6ecd32918c252e4fd053d3ddc2043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1538812/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1538812/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16844987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrè, F</creatorcontrib><creatorcontrib>Clote, P</creatorcontrib><title>DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>DiANNA is a recent state-of-the-art artificial neural network and web server, which determines the cysteine oxidation state and disulfide connectivity of a protein, given only its amino acid sequence. Version 1.0 of DiANNA uses a feed-forward neural network to determine which cysteines are involved in a disulfide bond, and employs a novel architecture neural network to predict which half-cystines are covalently bound to which other half-cystines. In version 1.1 of DiANNA, described here, we extend functionality by applying a support vector machine with spectrum kernel for the cysteine classification problem--to determine whether a cysteine is reduced (free in sulfhydryl state), half-cystine (involved in a disulfide bond) or bound to a metallic ligand. In the latter case, DiANNA predicts the ligand among iron, zinc, cadmium and carbon. Available at: http://bioinformatics.bc.edu/clotelab/DiANNA/.</description><subject>Artificial Intelligence</subject><subject>Cysteine - chemistry</subject><subject>Cysteine - classification</subject><subject>Disulfides - chemistry</subject><subject>Internet</subject><subject>Oxidation-Reduction</subject><subject>Proteins - chemistry</subject><subject>Sequence Analysis, Protein</subject><subject>Software</subject><subject>User-Computer Interface</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ktvEzEQB_AVoqKhcOEDgMWBA9K248f6wQEpCtAgVUEUIiEuluOdTd1udou9Ke23x2ij8rjk5MP8_Lc1M0XxjMIxBcNPOhdP1lct1eZBMaFcslIYyR4WE-BQlRSEPiwep3QJQAWtxKPikEothNFqUizfheliMSX0mL4hriN4O2CXQt-RviHDBZJd_SeuSMJ4g5E0fSQDxvzqHfF3acDQIfGtSyk0wbshX35SHDSuTfh0dx4Vyw_vv87m5dmn04-z6VnpJYOhZKDAmBWnRmrPBfMOFWpD3UrjyojaN5WX6GvODNWeVQxFU0PFa17XnoHgR8XbMfd6u9pg7bEbomvtdQyb_Dvbu2D_rXThwq77G0srrjVlOeDVLiD2P7aYBrsJyWPbug77bbJSS8ENlXshy2Gy4mYvpIZLIzjP8OV_8LLf5q62OQxASmBK70GV0iCqjF6PyMc-pYjNfQMo2N8bYvOs7LghGT__u2V_6G4lMihHEPJob-_rLl5Zqbiq7Pzbd_t5DmIxU-f2PPsXo29cb906hmSXXxhQDhS0UsLwX_b3zho</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Ferrè, F</creator><creator>Clote, P</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060701</creationdate><title>DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification</title><author>Ferrè, F ; Clote, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-207099b31968c342cae7e891ab8eb94dcf5c6ecd32918c252e4fd053d3ddc2043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Artificial Intelligence</topic><topic>Cysteine - chemistry</topic><topic>Cysteine - classification</topic><topic>Disulfides - chemistry</topic><topic>Internet</topic><topic>Oxidation-Reduction</topic><topic>Proteins - chemistry</topic><topic>Sequence Analysis, Protein</topic><topic>Software</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrè, F</creatorcontrib><creatorcontrib>Clote, P</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrè, F</au><au>Clote, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>34</volume><issue>suppl-2</issue><spage>W182</spage><epage>W185</epage><pages>W182-W185</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>DiANNA is a recent state-of-the-art artificial neural network and web server, which determines the cysteine oxidation state and disulfide connectivity of a protein, given only its amino acid sequence. Version 1.0 of DiANNA uses a feed-forward neural network to determine which cysteines are involved in a disulfide bond, and employs a novel architecture neural network to predict which half-cystines are covalently bound to which other half-cystines. In version 1.1 of DiANNA, described here, we extend functionality by applying a support vector machine with spectrum kernel for the cysteine classification problem--to determine whether a cysteine is reduced (free in sulfhydryl state), half-cystine (involved in a disulfide bond) or bound to a metallic ligand. In the latter case, DiANNA predicts the ligand among iron, zinc, cadmium and carbon. Available at: http://bioinformatics.bc.edu/clotelab/DiANNA/.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>16844987</pmid><doi>10.1093/nar/gkl189</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2006-07, Vol.34 (suppl-2), p.W182-W185 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1538812 |
source | Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Artificial Intelligence Cysteine - chemistry Cysteine - classification Disulfides - chemistry Internet Oxidation-Reduction Proteins - chemistry Sequence Analysis, Protein Software User-Computer Interface |
title | DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DiANNA%201.1:%20an%20extension%20of%20the%20DiANNA%20web%20server%20for%20ternary%20cysteine%20classification&rft.jtitle=Nucleic%20acids%20research&rft.au=Ferr%C3%A8,%20F&rft.date=2006-07-01&rft.volume=34&rft.issue=suppl-2&rft.spage=W182&rft.epage=W185&rft.pages=W182-W185&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkl189&rft_dat=%3Cproquest_pubme%3E19369433%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200578045&rft_id=info:pmid/16844987&rfr_iscdi=true |