DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification

DiANNA is a recent state-of-the-art artificial neural network and web server, which determines the cysteine oxidation state and disulfide connectivity of a protein, given only its amino acid sequence. Version 1.0 of DiANNA uses a feed-forward neural network to determine which cysteines are involved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2006-07, Vol.34 (suppl-2), p.W182-W185
Hauptverfasser: Ferrè, F, Clote, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page W185
container_issue suppl-2
container_start_page W182
container_title Nucleic acids research
container_volume 34
creator Ferrè, F
Clote, P
description DiANNA is a recent state-of-the-art artificial neural network and web server, which determines the cysteine oxidation state and disulfide connectivity of a protein, given only its amino acid sequence. Version 1.0 of DiANNA uses a feed-forward neural network to determine which cysteines are involved in a disulfide bond, and employs a novel architecture neural network to predict which half-cystines are covalently bound to which other half-cystines. In version 1.1 of DiANNA, described here, we extend functionality by applying a support vector machine with spectrum kernel for the cysteine classification problem--to determine whether a cysteine is reduced (free in sulfhydryl state), half-cystine (involved in a disulfide bond) or bound to a metallic ligand. In the latter case, DiANNA predicts the ligand among iron, zinc, cadmium and carbon. Available at: http://bioinformatics.bc.edu/clotelab/DiANNA/.
doi_str_mv 10.1093/nar/gkl189
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1538812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19369433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-207099b31968c342cae7e891ab8eb94dcf5c6ecd32918c252e4fd053d3ddc2043</originalsourceid><addsrcrecordid>eNqF0ktvEzEQB_AVoqKhcOEDgMWBA9K248f6wQEpCtAgVUEUIiEuluOdTd1udou9Ke23x2ij8rjk5MP8_Lc1M0XxjMIxBcNPOhdP1lct1eZBMaFcslIYyR4WE-BQlRSEPiwep3QJQAWtxKPikEothNFqUizfheliMSX0mL4hriN4O2CXQt-RviHDBZJd_SeuSMJ4g5E0fSQDxvzqHfF3acDQIfGtSyk0wbshX35SHDSuTfh0dx4Vyw_vv87m5dmn04-z6VnpJYOhZKDAmBWnRmrPBfMOFWpD3UrjyojaN5WX6GvODNWeVQxFU0PFa17XnoHgR8XbMfd6u9pg7bEbomvtdQyb_Dvbu2D_rXThwq77G0srrjVlOeDVLiD2P7aYBrsJyWPbug77bbJSS8ENlXshy2Gy4mYvpIZLIzjP8OV_8LLf5q62OQxASmBK70GV0iCqjF6PyMc-pYjNfQMo2N8bYvOs7LghGT__u2V_6G4lMihHEPJob-_rLl5Zqbiq7Pzbd_t5DmIxU-f2PPsXo29cb906hmSXXxhQDhS0UsLwX_b3zho</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200578045</pqid></control><display><type>article</type><title>DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ferrè, F ; Clote, P</creator><creatorcontrib>Ferrè, F ; Clote, P</creatorcontrib><description>DiANNA is a recent state-of-the-art artificial neural network and web server, which determines the cysteine oxidation state and disulfide connectivity of a protein, given only its amino acid sequence. Version 1.0 of DiANNA uses a feed-forward neural network to determine which cysteines are involved in a disulfide bond, and employs a novel architecture neural network to predict which half-cystines are covalently bound to which other half-cystines. In version 1.1 of DiANNA, described here, we extend functionality by applying a support vector machine with spectrum kernel for the cysteine classification problem--to determine whether a cysteine is reduced (free in sulfhydryl state), half-cystine (involved in a disulfide bond) or bound to a metallic ligand. In the latter case, DiANNA predicts the ligand among iron, zinc, cadmium and carbon. Available at: http://bioinformatics.bc.edu/clotelab/DiANNA/.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkl189</identifier><identifier>PMID: 16844987</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Artificial Intelligence ; Cysteine - chemistry ; Cysteine - classification ; Disulfides - chemistry ; Internet ; Oxidation-Reduction ; Proteins - chemistry ; Sequence Analysis, Protein ; Software ; User-Computer Interface</subject><ispartof>Nucleic acids research, 2006-07, Vol.34 (suppl-2), p.W182-W185</ispartof><rights>The Author 2006. Published by Oxford University Press. All rights reserved The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org</rights><rights>Copyright Oxford University Press(England) 2006</rights><rights>The Author 2006. Published by Oxford University Press. All rights reserved 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-207099b31968c342cae7e891ab8eb94dcf5c6ecd32918c252e4fd053d3ddc2043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1538812/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1538812/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16844987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrè, F</creatorcontrib><creatorcontrib>Clote, P</creatorcontrib><title>DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>DiANNA is a recent state-of-the-art artificial neural network and web server, which determines the cysteine oxidation state and disulfide connectivity of a protein, given only its amino acid sequence. Version 1.0 of DiANNA uses a feed-forward neural network to determine which cysteines are involved in a disulfide bond, and employs a novel architecture neural network to predict which half-cystines are covalently bound to which other half-cystines. In version 1.1 of DiANNA, described here, we extend functionality by applying a support vector machine with spectrum kernel for the cysteine classification problem--to determine whether a cysteine is reduced (free in sulfhydryl state), half-cystine (involved in a disulfide bond) or bound to a metallic ligand. In the latter case, DiANNA predicts the ligand among iron, zinc, cadmium and carbon. Available at: http://bioinformatics.bc.edu/clotelab/DiANNA/.</description><subject>Artificial Intelligence</subject><subject>Cysteine - chemistry</subject><subject>Cysteine - classification</subject><subject>Disulfides - chemistry</subject><subject>Internet</subject><subject>Oxidation-Reduction</subject><subject>Proteins - chemistry</subject><subject>Sequence Analysis, Protein</subject><subject>Software</subject><subject>User-Computer Interface</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ktvEzEQB_AVoqKhcOEDgMWBA9K248f6wQEpCtAgVUEUIiEuluOdTd1udou9Ke23x2ij8rjk5MP8_Lc1M0XxjMIxBcNPOhdP1lct1eZBMaFcslIYyR4WE-BQlRSEPiwep3QJQAWtxKPikEothNFqUizfheliMSX0mL4hriN4O2CXQt-RviHDBZJd_SeuSMJ4g5E0fSQDxvzqHfF3acDQIfGtSyk0wbshX35SHDSuTfh0dx4Vyw_vv87m5dmn04-z6VnpJYOhZKDAmBWnRmrPBfMOFWpD3UrjyojaN5WX6GvODNWeVQxFU0PFa17XnoHgR8XbMfd6u9pg7bEbomvtdQyb_Dvbu2D_rXThwq77G0srrjVlOeDVLiD2P7aYBrsJyWPbug77bbJSS8ENlXshy2Gy4mYvpIZLIzjP8OV_8LLf5q62OQxASmBK70GV0iCqjF6PyMc-pYjNfQMo2N8bYvOs7LghGT__u2V_6G4lMihHEPJob-_rLl5Zqbiq7Pzbd_t5DmIxU-f2PPsXo29cb906hmSXXxhQDhS0UsLwX_b3zho</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Ferrè, F</creator><creator>Clote, P</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060701</creationdate><title>DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification</title><author>Ferrè, F ; Clote, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-207099b31968c342cae7e891ab8eb94dcf5c6ecd32918c252e4fd053d3ddc2043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Artificial Intelligence</topic><topic>Cysteine - chemistry</topic><topic>Cysteine - classification</topic><topic>Disulfides - chemistry</topic><topic>Internet</topic><topic>Oxidation-Reduction</topic><topic>Proteins - chemistry</topic><topic>Sequence Analysis, Protein</topic><topic>Software</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrè, F</creatorcontrib><creatorcontrib>Clote, P</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrè, F</au><au>Clote, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>34</volume><issue>suppl-2</issue><spage>W182</spage><epage>W185</epage><pages>W182-W185</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>DiANNA is a recent state-of-the-art artificial neural network and web server, which determines the cysteine oxidation state and disulfide connectivity of a protein, given only its amino acid sequence. Version 1.0 of DiANNA uses a feed-forward neural network to determine which cysteines are involved in a disulfide bond, and employs a novel architecture neural network to predict which half-cystines are covalently bound to which other half-cystines. In version 1.1 of DiANNA, described here, we extend functionality by applying a support vector machine with spectrum kernel for the cysteine classification problem--to determine whether a cysteine is reduced (free in sulfhydryl state), half-cystine (involved in a disulfide bond) or bound to a metallic ligand. In the latter case, DiANNA predicts the ligand among iron, zinc, cadmium and carbon. Available at: http://bioinformatics.bc.edu/clotelab/DiANNA/.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>16844987</pmid><doi>10.1093/nar/gkl189</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2006-07, Vol.34 (suppl-2), p.W182-W185
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1538812
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Artificial Intelligence
Cysteine - chemistry
Cysteine - classification
Disulfides - chemistry
Internet
Oxidation-Reduction
Proteins - chemistry
Sequence Analysis, Protein
Software
User-Computer Interface
title DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DiANNA%201.1:%20an%20extension%20of%20the%20DiANNA%20web%20server%20for%20ternary%20cysteine%20classification&rft.jtitle=Nucleic%20acids%20research&rft.au=Ferr%C3%A8,%20F&rft.date=2006-07-01&rft.volume=34&rft.issue=suppl-2&rft.spage=W182&rft.epage=W185&rft.pages=W182-W185&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkl189&rft_dat=%3Cproquest_pubme%3E19369433%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200578045&rft_id=info:pmid/16844987&rfr_iscdi=true